Cent Eur J Public Health 2021, 29(4):247-258 | DOI: 10.21101/cejph.a7219

Prophylactic vaccines against cancers of non-infectious origin: a dream or a real possibility?

Vladimír Vonka1, Ivan Hirsch2, 3
1 Institute of Haematology and Blood Transfusion, Emeritus, Prague, Czech Republic
2 Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
3 Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic

The dramatic progress in tumour biology and immunology in the past several years has opened new avenues for the treatment and prevention of cancer. One of the great contributions of the immunotherapeutic approaches is an increasing understanding of the immunology of cancer, which is, gradually creating conditions for the development of prophylactic anti-cancer vaccines. Efficient vaccines have been developed and employed for the prophylaxis of two frequent cancers of viral origin, namely cervical cancer and liver cancer. The new knowledge on the interactions between the immune system and the malignant tumors seems to provide means for the development of prophylactic vaccines against cancers developing due to the mutations in the proto-oncogenes converting their products into oncoproteins. According to the present estimates, these cancers form a great majority of human malignancies. Recent evidence has indicated that the immune system recognizes such mutated proteins, and that the development of cancer is due to the failure of the immune system to eliminate neoplastic cells. Followingly, it can be expected that inducing immunity against the mutated epitopes will increase the capacity of the body to deal with the initiated precancerous cells. In the present paper this hypothesis is primarily discussed in the relationship with colorectal cancer (CRC), which seems to be a well-fitting candidate for prophylactic vaccination. CRC is the third most frequent malignancy and the fourth most common cause of cancer mortality. Mutations of two proto-oncogenes, namely RAS and RAF, are involved in the majority of CRC cases and, in addition, they are shared with other human malignancies. Therefore, the strategy to be used for prophylaxis of CRC is discussed together with several other frequent human cancers, namely lung cancer, pancreatic duct cancer and melanoma. The prophylactic vaccines proposed are aimed at the reduction of the incidence of these and, to a lesser extent, some other cancers.

Klíčová slova: cancer, prophylactic vaccines, proto-oncogenes RAS and RAF

Vloženo: 1. prosinec 2021; Revidováno: 23. prosinec 2021; Přijato: 23. prosinec 2021; Zveřejněno: 31. prosinec 2021  Zobrazit citaci

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Vonka V, Hirsch I. Prophylactic vaccines against cancers of non-infectious origin: a dream or a real possibility? Cent Eur J Public Health. 2021;29(4):247-258. doi: 10.21101/cejph.a7219. PubMed PMID: 35026062.
Stáhnout citaci

Reference

  1. Vonka V, Hamsíková E. Vaccines against human papillomaviruses--a major breakthrough in cancer prevention. Cent Eur J Public Health. 2007;15(4):131-9. Přejít k původnímu zdroji... Přejít na PubMed...
  2. Pol S. Hepatitis: HBV vaccine-the first vaccine to prevent cancer. Nat Rev Gastroenterol Hepatol. 2015;12(4):190-1. Přejít k původnímu zdroji... Přejít na PubMed...
  3. Lehours P, Ferrero RL. Review: Helicobacter: inflammation, immunology, and vaccines. Helicobacter. 2019;24 Suppl 1:e12644. doi: 10.1111/hel.12644. Přejít k původnímu zdroji... Přejít na PubMed...
  4. Crews DW, Dombroski JA, King MR. Prophylactic cancer vaccines engineered to elicit specific adaptive immune response. Front Oncol. 2021;11:626463. doi: 10.3389/fonc.2021.626463. Přejít k původnímu zdroji... Přejít na PubMed...
  5. Beckwith DM, Cudic M. Tumor-associated O-glycans of MUC1: Carriers of the glyco-code and targets for cancer vaccine design. Semin Immunol. 2020;47:101389. doi: 10.1016/j.smim.2020.101389. Přejít k původnímu zdroji... Přejít na PubMed...
  6. Chen W, Zhang Z, Zhang S, Zhu P, Ko JK, Yung KK. MUC1: structure, function, and clinic application in epithelial cancers. Int J Mol Sci. 2021;22(12):6567. doi: 10.3390/ijms22126567. Přejít k původnímu zdroji... Přejít na PubMed...
  7. Finn OJ. Vaccines for cancer prevention: a practical and feasible approach to the cancer epidemic. Cancer Immunol Res. 2014;2(8):708-13. Přejít k původnímu zdroji... Přejít na PubMed...
  8. Fletcher R, Wang YJ, Schoen RE, Finn OJ, Yu J, Zhang L. Colorectal cancer prevention: immune modulation taking the stage. Biochim Biophys Acta Rev Cancer. 2018;1869(2):138-48. Přejít k původnímu zdroji... Přejít na PubMed...
  9. Prior IA, Hood FE, Hartley JL. The frequency of Ras mutations in cancer. Cancer Res. 2020;80(14):2969-74. Přejít k původnímu zdroji... Přejít na PubMed...
  10. Bos JL. ras oncogenes in human cancer: a review. Cancer Res. 1989 Sep 1;49(17):4682-9. Erratum in: Cancer Res 1990;50(4):1352.
  11. Tsuchida N, Murugan AK, Grieco M. Kirsten Ras* oncogene: significance of its discovery in human cancer research. Oncotarget. 2016;7(29):46717-33. Přejít k původnímu zdroji... Přejít na PubMed...
  12. Hobbs GA, Der CJ, Rossman KL. RAS isoforms and mutations in cancer at a glance. J Cell Sci. 2016;129(7):1287-92. Přejít k původnímu zdroji... Přejít na PubMed...
  13. Muñoz-Maldonado C, Zimmer Y, Medová M. A Comparative analysis of individual RAS mutations in cancer biology. Front Oncol. 2019;9:1088. doi: 10.3389/fonc.2019.01088. Přejít k původnímu zdroji... Přejít na PubMed...
  14. Serebriiskii IG, Connelly C, Frampton G, Newberg J, Cooke M, Miller V, et al. Comprehensive characterization of RAS mutants in colon and rectal cancer. Nat Commun. 2019;10: 3722. Doi: 10.1038/s41467-019-11530-0. Přejít k původnímu zdroji... Přejít na PubMed...
  15. Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y, Hu LL. ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med. 2020;19(3):1997-2007. Přejít k původnímu zdroji... Přejít na PubMed...
  16. Haigis KM, Kendall KR, Wang Y, Cheung A, Haigis MC, Glickman JN, et al. Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon. Nat Genet. 2008;40(5):600-8. Přejít k původnímu zdroji... Přejít na PubMed...
  17. Hartley ML, Bade NA, Prins PA, Ampie L, Marshall JL. Pancreatic cancer, treatment options, and GI-4000. Hum Vaccin Immunother. 2014;10(11):3347-53. Přejít k původnímu zdroji... Přejít na PubMed...
  18. Burd CE, Liu W, Huynh MV, Waqas MA, Gillahan JE, Clark KS, et al. Mutation-specific RAS oncogenicity explains NRAS codon 61 selection in melanoma. Cancer Discov. 2014;4(12):1418-29. Přejít k původnímu zdroji... Přejít na PubMed...
  19. Prior IA, Lewis PD, Mattos C. A comprehensive survey of Ras mutations in cancer. Cancer Res. 2012;72(10):2457-67. Přejít k původnímu zdroji... Přejít na PubMed...
  20. Prior IA. The disease burden of Ras [Internet]. Bethesda: National Cancer Institute; 2020 [cited 2021 Dec 3]. Available from: https://www.cancer.gov/research/key-initiatives/ras/ras-central/blog/2020/prior-ras-in-cancer-databases.
  21. Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ. Drugging the undruggable Ras: mission possible? Nat Rev Drug Discov. 2014;13(11):828-51. Přejít k původnímu zdroji... Přejít na PubMed...
  22. Jang EK, Song DE, Sim SY, Kwon H, Choi YM, Jeon MJ, et al. NRAS codon 61 mutation is associated with distant metastasis in patients with follicular thyroid carcinoma. Thyroid. 2014;24(8):1275-81. Přejít k původnímu zdroji... Přejít na PubMed...
  23. Khan AQ, Kuttikrishnan S, Siveen KS, Prabhu KS, Shanmugakonar M, Al-Naemi HA, et al. RAS-mediated oncogenic signaling pathways in human malignancies. Semin Cancer Biol. 2019;54:1-13. Přejít k původnímu zdroji... Přejít na PubMed...
  24. Gutiérrez-Castañeda LD, Nova JA, Tovar-Parra JD. Frequency of mutations in BRAF, NRAS, and KIT in different populations and histological subtypes of melanoma: a systemic review. Melanoma Res. 2020;30(1):62-70. Přejít k původnímu zdroji... Přejít na PubMed...
  25. Pantsar T. The current understanding of KRAS protein structure and dynamics. Comput Struct Biotechnol J. 2019;18:189-98. Přejít k původnímu zdroji... Přejít na PubMed...
  26. Heppt MV, Siepmann T, Engel J, Schubert-Fritschle G, Eckel R, Mirlach L, et al. Prognostic significance of BRAF and NRAS mutations in melanoma: a German study from routine care. BMC Cancer. 2017;17(1):536. doi: 10.1186/s12885-017-3529-5. Přejít k původnímu zdroji... Přejít na PubMed...
  27. Hobbs GA, Der CJ. RAS Mutations Are Not Created Equal. Cancer Discov. 2019;9(6):696-8. Přejít k původnímu zdroji... Přejít na PubMed...
  28. Ward AF, Braun BS, Shannon KM. Targeting oncogenic Ras signaling in hematologic malignancies. Blood. 2012;120(17):3397-406. Přejít k původnímu zdroji... Přejít na PubMed...
  29. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949-54. Přejít k původnímu zdroji... Přejít na PubMed...
  30. Seppälä TT, Böhm JP, Friman M, Lahtinen L, Väyrynen VM, Liipo TK, et al. Combination of microsatellite instability and BRAF mutation status for subtyping colorectal cancer. Br J Cancer. 2015;112(12):1966-75. Přejít k původnímu zdroji... Přejít na PubMed...
  31. Pakneshan S, Salajegheh A, Smith RA, Lam AK. Clinicopathological relevance of BRAF mutations in human cancer. Pathology. 2013;45(4):346-56. Přejít k původnímu zdroji... Přejít na PubMed...
  32. Zaman A, Wu W, Bivona TG. Targeting oncogenic BRAF: past, present, and future. Cancers (Basel). 2019;11(8):1197. doi: 10.3390/cancers11081197. Přejít k původnímu zdroji... Přejít na PubMed...
  33. Barras D. BRAF Mutation in colorectal cancer: an update. Biomark Cancer. 2015;7(Suppl 1):9-12. Přejít k původnímu zdroji... Přejít na PubMed...
  34. Ates O, Yalcin S. Concomitant RAS and BRAF mutation in colorectal cancer - a report of 7 cases. Indian J Cancer. 2019;56(2):176-9. Přejít k původnímu zdroji... Přejít na PubMed...
  35. Corcoran RB, André T, Atreya CE, Schellens JHM, Yoshino T, Bendell JC, et al. Combined BRAF, EGFR, and MEK inhibition in patients with BRAFV600E-mutant colorectal cancer. Cancer Discov. 2018;8(4):428-43. Přejít k původnímu zdroji... Přejít na PubMed...
  36. Kopetz S, Grothey A, Yaeger R, Van Cutsem E, Desai J, Yoshino T, et al. Encorafenib, binimetinib, and cetuximab in BRAF V600E-mutated colorectal cancer. N Engl J Med. 2019;381(17):1632-43. Přejít k původnímu zdroji... Přejít na PubMed...
  37. Dvorak K, Higgins A, Palting J, Cohen M, Brunhoeber P. Immunohistochemistry with anti-BRAF V600E (VE1) mouse monoclonal antibody is a sensitive method for detection of the BRAF V600E mutation in colon cancer: evaluation of 120 cases with and without KRAS mutation and literature review. Pathol Oncol Res. 2019;25(1):349-59. Přejít k původnímu zdroji... Přejít na PubMed...
  38. Wu M, Kim YS, Ryu HS, Choi SC, Kim KY, Park WC, et al. MSI status is associated with distinct clinicopathological features in BRAF mutation colorectal cancer: A systematic review and meta-analysis. Pathol Res Pract. 2020;216(1):152791. doi: 10.1016/j.prp.2019.152791. Přejít k původnímu zdroji... Přejít na PubMed...
  39. Tissot C, Couraud S, Tanguy R, Bringuier PP, Girard N, Souquet PJ. Clinical characteristics and outcome of patients with lung cancer harboring BRAF mutations. Lung Cancer. 2016;91:23-8. Přejít k původnímu zdroji... Přejít na PubMed...
  40. Cui G, Liu D, Li W, Fu X, Liang Y, Li Y, et al. A meta-analysis of the association between BRAF mutation and nonsmall cell lung cancer. Medicine (Baltimore). 2017;96(14):e6552. doi: 10.1097/MD.0000000000006552. Přejít k původnímu zdroji... Přejít na PubMed...
  41. Schultz NA, Roslind A, Christensen IJ, Horn T, Høgdall E, Pedersen LN, et al. Frequencies and prognostic role of KRAS and BRAF mutations in patients with localized pancreatic and ampullary adenocarcinomas. Pancreas. 2012;41(5):759-66. Přejít k původnímu zdroji... Přejít na PubMed...
  42. Cheng L, Lopez-Beltran A, Massari F, MacLennan GT, Montironi R. Molecular testing for BRAF mutations to inform melanoma treatment decisions: a move toward precision medicine. Mod Pathol. 2018;31(1):24-38. Přejít k původnímu zdroji... Přejít na PubMed...
  43. Patel H, Yacoub N, Mishra R, White A, Long Y, Alanazi S, et al. Current advances in the treatment of BRAF-mutant melanoma. Cancers (Basel). 2020;12(2):482. doi: 10.3390/cancers12020482. Přejít k původnímu zdroji... Přejít na PubMed...
  44. Xing M, Alzahrani AS, Carson KA, Viola D, Elisei R, Bendlova B, et al. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA. 2013;309(14):1493-501. Přejít k původnímu zdroji... Přejít na PubMed...
  45. Pyo JS, Sohn JH, Kang G. BRAF Immunohistochemistry using clone VE1 is strongly concordant with BRAF(V600E) mutation test in papillary thyroid carcinoma. Endocr Pathol. 2015;26(3):211-7. Přejít k původnímu zdroji... Přejít na PubMed...
  46. Karbowniczek M, Henske EP. The role of tuberin in cellular differentiation: are B-Raf and MAPK involved? Ann N Y Acad Sci. 2005;1059:168-73. Přejít k původnímu zdroji... Přejít na PubMed...
  47. Pappa KI, Choleza M, Markaki S, Giannikaki E, Kyroudi A, Vlachos G, et al. Consistent absence of BRAF mutations in cervical and endometrial cancer despite KRAS mutation status. Gynecol Oncol. 2006;100(3):596-600. Přejít k původnímu zdroji... Přejít na PubMed...
  48. Trifa AP, Popp RA, Cucuianu A, Coadă CA, Urian LG, Militaru MS, et al. Absence of BRAF V600E mutation in a cohort of 402 patients with various chronic and acute myeloid neoplasms. Leuk Lymphoma. 2012;53(12):2496-7. Přejít k původnímu zdroji... Přejít na PubMed...
  49. Tiacci E, Trifonov V, Schiavoni G, Holmes A, Kern W, Martelli MP, et al. BRAF mutations in hairy-cell leukemia. N Engl J Med. 2011;364(24):2305-15. Přejít k původnímu zdroji... Přejít na PubMed...
  50. Xu J, Pfarr N, Endris V, Mai EK, Md Hanafiah NH, Lehners N, et al. Molecular signaling in multiple myeloma: association of RAS/RAF mutations and MEK/ERK pathway activation. Oncogenesis. 2017;6(5):e337. doi: 10.1038/oncsis.2017.36. Přejít k původnímu zdroji... Přejít na PubMed...
  51. Maraka S, Janku F. BRAF alterations in primary brain tumors. Discov Med. 2018;26(141):51-60. Přejít na PubMed...
  52. Brastianos PK, Taylor-Weiner A, Manley PE, Jones RT, Dias-Santagata D, Thorner AR, et al. Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas. Nat Genet. 2014;46(2):161-5. Přejít k původnímu zdroji... Přejít na PubMed...
  53. Badalian-Very G, Vergilio JA, Degar BK, MacConaill LE, Brandner B, Calicchio ML, et al. Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood. 2010;116(11):1919-22. Přejít k původnímu zdroji... Přejít na PubMed...
  54. Tannapfel A, Sommerer F, Benicke M, Katalinic A, Uhlmann D, Witzigmann H, et al. Mutations of the BRAF gene in cholangiocarcinoma but not in hepatocellular carcinoma. Gut. 2003;52(5):706-12. Přejít k původnímu zdroji... Přejít na PubMed...
  55. Colombino M, Sperlongano P, Izzo F, Tatangelo F, Botti G, Lombardi A, et al. BRAF and PI3KCA genes are somatically mutated in hepatocellular carcinoma among patients from South Italy. Cell Death Dis. 2012;3(1):e259. doi: 10.1038/cddis.2011.136. Přejít k původnímu zdroji... Přejít na PubMed...
  56. Hou W, Liu J, Chen P, Wang H, Ye BC, Qiang F. Mutation analysis of key genes in RAS/RAF and PI3K/PTEN pathways in Chinese patients with hepatocellular carcinoma. Oncol Letts. 2014;8(3):1249-54. Přejít k původnímu zdroji... Přejít na PubMed...
  57. Gedde-Dahl T 3rd, Spurkland A, Eriksen J, Thorsby E, Gaudernack G. Memory T cells of a patient with follicular thyroid carcinoma recognize peptides derived from mutated p21 ras (Gln-->Leu61). Int Immunol. 1992;4(11):1331-7. Přejít k původnímu zdroji... Přejít na PubMed...
  58. Gedde-Dahl T 3rd, Eriksen JA, Thorsby, Gaudernack G. T-cell responses against products of oncogenes: generation and characterization of human T-cell clones specific for p21 ras-derived synthetic peptides. Hum Immunol. 1992;33(4):266-74. Přejít k původnímu zdroji... Přejít na PubMed...
  59. Fossum B, Gedde-Dahl T 3rd, Hansen T, Eriksen JA, Thorsby E, Gaudernack G. Overlapping epitopes encompassing a point mutation (12 Gly-->Arg) in p21 ras can be recognized by HLA-DR, -DP and -DQ restricted T cells. Eur J Immunol. 1993;23(10):2687-91. Přejít k původnímu zdroji... Přejít na PubMed...
  60. Cheever MA, Chen W, Disis M, Takahashi M, Peace DJ. T-cell immunity to oncogenic proteins including mutated ras and chimeric bcr-abl. Ann NY Acad Sci. 1993;690:101-12. Přejít k původnímu zdroji... Přejít na PubMed...
  61. Fenton RG, Keller CJ, Hanna NN, Taub DD. Induction of T-cell immunity against Ras oncoproteins by soluble protein or Ras-expressing Escherichia coli. J Natl Cancer Inst. 1995;87(24):1853-61. Přejít k původnímu zdroji... Přejít na PubMed...
  62. Gjertsen MK, Saeterdal I, Thorsby E, Gaudernack G. Characterisation of immune responses in pancreatic carcinoma patients after mutant p21 ras peptide vaccination. Br J Cancer. 1996;74(11):1828-33 Přejít k původnímu zdroji... Přejít na PubMed...
  63. Abrams SI, Hand PH, Tsang KY, Schlom J. Mutant ras epitopes as targets for cancer vaccines. Semin Oncol. 1996;23(1):118-34.
  64. Gjertsen NK, Gaudemack G. Mutated ras peptides as vaccines in immunotherapy of cancer. Vox Sang. 1998;74 (Suppl 2):489-95. Přejít k původnímu zdroji... Přejít na PubMed...
  65. Khleif SN, Abrams SI, Hamilton JM, Bergmann-Leitner E, Chen A, Bastian A, et al. A phase I vaccine trial with peptides reflecting ras oncogene mutations of solid tumors. J Immunother. 1999;22(2):155-65. Přejít k původnímu zdroji... Přejít na PubMed...
  66. Hunger RE, Brand CU, Streit M, Eriksen JA, Gjertsen MK, Saeterdal I, et al. Successful induction of immune responses against mutant ras in melanoma patients using intradermal injection of peptides and GM-CSF as adjuvant. Exp Dermatol. 2001;10(3):161-7. Přejít k původnímu zdroji... Přejít na PubMed...
  67. Linard B, Bezieau S, Benlalam H, Labarrière N, Guilloux Y, Diez E, et al. A ras-mutated peptide targeted by CTL infiltrating a human melanoma lesion. J Immunol. 2002;168(9):4802-8. Přejít k původnímu zdroji... Přejít na PubMed...
  68. Carbone DP, Ciernik IF, Kelley MJ, Smith MC, Nadaf S, Kavanaugh D, et al. Immunization with mutant p53- and K-ras-derived peptides in cancer patients: immune response and clinical outcome. J Clin Oncol. 2005;23(22):5099-107. Přejít k původnímu zdroji... Přejít na PubMed...
  69. Kubuschok B, Neumann F, Breit R, Sester M, Schormann C, Wagner C, et al. Naturally occurring T-cell response against mutated p21 ras oncoprotein in pancreatic cancer. Clin Cancer Res. 2006;12(4):1365-72. Přejít k původnímu zdroji... Přejít na PubMed...
  70. Meyer RG, Korn S, Micke P, Becker K, Huber C, Wölfel T, et al. An open-label, prospective phase I/II study evaluating the immunogenicity and safety of a ras peptide vaccine plus GM-CSF in patients with non-small cell lung cancer. Lung Cancer. 2007;58(1):88-94. Přejít k původnímu zdroji... Přejít na PubMed...
  71. Rahma OE, Hamilton JM, Wojtowicz W, Dakheel O, Bernstein S, Liewehr DJ, et al. The immunological and clinical effects of mutated ras peptide vaccine in combination with IL-2, GM-CSF, or both in patients with solid tumors. J Transl Med. 2014;12:55. doi: 10.1186/1479-5876-12-55. Přejít k původnímu zdroji... Přejít na PubMed...
  72. Pandolfi F, Cianci R, Pagliari D, Casciano F, Bagalà C, Astone A, et al. The immune response to tumors as a tool toward immunotherapy. Clin Dev Immunol. 2011;2011:894704. doi: 10.1155/2011/894704. Přejít k původnímu zdroji... Přejít na PubMed...
  73. Polidoro MA, Milane F, Soldani CV, Franceschini B, Anselmo A, Colombo FS, et al. Impact of RAS mutations on the immune infiltrate of colorectal liver metastases: a preliminary study. J Leukoc Biol. 2020;108(2):715-21. Přejít k původnímu zdroji... Přejít na PubMed...
  74. Shahda S, O´Neil B. GI-4000 in KRAS mutant cancers. Expert Opin Investig Drugs. 2014;23(2):273-8. Přejít k původnímu zdroji... Přejít na PubMed...
  75. Szcepaniak Sloane RA, Gopalakrishnan V, Reddy SM, Zhang X, Reuben A, Wargo JA. Interaction of molecular alterations with immune response in melanoma. Cancer. 2017;123(S11):2130-42. Přejít k původnímu zdroji... Přejít na PubMed...
  76. Chen J, Xiao-Zhong G, Qi XS. Clinical outcomes of specific immunotherapy in advanced pancreatic cancer: a systematic review and meta-analysis. J Immunol Res. 2017;2017:8282391. doi: 10.1155/2017/8282391. Přejít k původnímu zdroji... Přejít na PubMed...
  77. Luo Y, Chen X, Han R, Chorev M, Dewolf WC, O'Donnell MA. Mutated ras p21 as a target for cancer therapy in mouse transitional cell carcinoma. J Urol. 1999;162(4):1519-26. Přejít k původnímu zdroji... Přejít na PubMed...
  78. Šmahel M, Sobotkova E, Vonka V, Hamsikova E, Zak R, Kitasato H, et al. DNA vaccine against oncogenic hamster cells transformed by HPV16 E6/E7 oncogenes and the activated ras oncogene. Oncol Rep. 1999;6(1):211-5. Přejít k původnímu zdroji... Přejít na PubMed...
  79. Fenton RG, Taub DD, Kwak LW, Smith MR, Longo DL. Cytotoxic T-cell response and in vivo protection against tumor cells harboring activated ras proto-oncogenes. J Natl Cancer Inst. 1993;85(16):1294-302. Přejít k původnímu zdroji... Přejít na PubMed...
  80. Šmahel M, Sobotková E, Bubenik J, Símová J, Zák R, Ludviková V, et al. Metastatic MHC class I-negative mouse cells derived by transformation with human papillomavirus type 16. Br J Cancer. 2001;84(3):374-80. Přejít k původnímu zdroji... Přejít na PubMed...
  81. Nasti TH, Rudemiller KJ, Cochran JB, Kim HK, Tsuruta Y, Fineberg NS, et al. Immunoprevention of chemical carcinogenesis through early recognition of oncogene mutations. J Immunol. 2015;194(6):2683-95. Přejít k původnímu zdroji... Přejít na PubMed...
  82. Timares L, Takashima A, Johnston SA. Quantitative analysis of the immunopotency of genetically transfected dendritic cells. Proc Natl Acad Sci U S A. 1998;95(22):13147-52. Přejít k původnímu zdroji... Přejít na PubMed...
  83. Holmström MO, Andersen MH. Healthy donors harbor memory T cell responses to RAS neo-antigens. Cancers (Basel). 2020;12(10):3045. doi: 10.3390/cancers12103045. Přejít k původnímu zdroji... Přejít na PubMed...
  84. LoRusso PM, Schalper K, Sosman J. Targeted therapy and immunotherapy: emerging biomarkers in metastatic melanoma. Pigment Cell Melanoma Res. 2020;33(3):390-402. Přejít k původnímu zdroji... Přejít na PubMed...
  85. Ilieva KM, Correa I, Josephs DB, Karagiannis P, Egbuniwe IU, Cafferkey MJ, et al. Effects of BRAF mutations and BRAF inhibition on immune responses to melanoma. Mol Cancer Ther. 2014;13(12):2769-83. Přejít k původnímu zdroji... Přejít na PubMed...
  86. Sharkey MS, Lizée G, Gonzales MI, Patel S, Topalian SL. CD4(+) T-cell recognition of mutated B-RAF in melanoma patients harboring the V599E mutation. Cancer Res. 2004;64(5):1595-9. Přejít k původnímu zdroji... Přejít na PubMed...
  87. Kelley MC. Immune responses to BRAF-targeted therapy in melanoma: Is targeted therapy immunotherapy? Crit Rev Oncol. 2016;21(1-2):83-91. Přejít k původnímu zdroji... Přejít na PubMed...
  88. Somasundaram P, Swoboda R, Caputo L, Otvos L, Weber B, Volpe P, et al. Human leukocyte antigen-A2-restricted CTL responses to mutated BRAF peptides in melanoma patients. Cancer Res. 2006;66(6):3287-93. Přejít k původnímu zdroji... Přejít na PubMed...
  89. Andersen MH, Fensterle J, Ugurel S, Reker S, Houben R, Guldberg P, et al. Immunogenicity of constitutively active V599EBRAF. Cancer Res. 2004;64(15):5456-60. Přejít k původnímu zdroji... Přejít na PubMed...
  90. Veatch JR, Lee SM, Fitzgibbon M, Chow IT, Jesernig B, Schmitt T, et al. Tumor-infiltrating BRAFV600E-specific CD4+ T cells correlated with complete clinical response in melanoma. J Clin Invest. 2018;128(4):1563-8. Přejít k původnímu zdroji... Přejít na PubMed...
  91. Lu YJ, Chu H, Wheeler LW, Nelson M, Westrick E, Matthaei JF, et al. Preclinical evaluation of bispecific adaptor molecule controlled folate receptor CAR-T cell therapy with special focus on pediatric malignancies. Front Oncol. 2019;9:151. doi: 10.3389/fonc.2019.00151. Přejít k původnímu zdroji... Přejít na PubMed...
  92. Marschall ALJ, Dubel S. Antibodies inside of a cell can change its outside: can intrabodies provide a new therapeutic paradigm? Comput Struct Biotechnol J. 2016;14:304-8. Přejít k původnímu zdroji... Přejít na PubMed...
  93. Jovčevska I, Muyldermans S. The therapeutic potential of nanobodies. BioDrugs. 2020;34(1):11-26. Přejít k původnímu zdroji... Přejít na PubMed...
  94. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immuno-editing. Ann Rev Immunol. 2004;22:329-60. Přejít k původnímu zdroji... Přejít na PubMed...
  95. Klein-Scory S, Wahner I, Maslova M, Al-Sewaidi Y, Pohl M, Mika T, et al. Evolution of RAS mutational status in liquid biopsies during first-line chemotherapy for metastatic colorectal cancer. Front Oncol. 2020;10:1115. doi: 10.3389/fonc.2020.01115. Přejít k původnímu zdroji... Přejít na PubMed...
  96. Germetaki T, Nicholls C, Adams RA, Braun M, Rogan J, Moghadam S, et al. Blood-based RAS mutation testing: concordance with tissue-based RAS testing and mutational changes on progression. Future Oncol. 2020;16(28):2177-89. Přejít k původnímu zdroji... Přejít na PubMed...
  97. Zvereva M, Roberti G, Durand G, Voegele C, Nguyen MD, Delhomme TM, et al. Circulating tumour-derived KRAS mutations in pancreatic cancer cases are predominantly carried by very short fragments of cell-free DNA. EBioMedicine. 2020;55:102462. doi: 10.1016/j.ebiom.2019.09.042. Přejít k původnímu zdroji... Přejít na PubMed...
  98. Susser M. Causal thinking in the health sciences: concepts and strategies of epidemiology. New Yor: Oxford University Press; 1973.
  99. Hill AB. The environment and disease: association or causation? Proc R Soc Med. 1965;58(5):295-300. Přejít k původnímu zdroji... Přejít na PubMed...
  100. Vonka V. Causality in medicine: the case of tumours and viruses. Philos Trans R Soc Lond B Biol Sci. 2000;355:1831-41. Přejít k původnímu zdroji... Přejít na PubMed...
  101. Gillies D. Indeterministic causality. In: Gillies D. Causality, probability, and medicine. Abingdon: Routledge; 2019. 195-203. Přejít k původnímu zdroji...