# ASSOCIATION BETWEEN COMPLEX EXPOSURE TO CADMIUM AND MERCURY AND ATOPIC DERMATITIS IN ELEMENTARY SCHOOL STUDENTS: ANALYSIS USING DATA FROM THE KOREAN NATIONAL ENVIRONMENTAL HEALTH SURVEY (KONEHS) CYCLE 4

# Kiook Baek

Cent Eur J Public Health 2025; 33 (1): 3–11 https://doi.org/10.21101/cejph.a8437

#### PART 1

# Participants Sampling, Urine Sampling and Transfer

For the fourth cycle of the baseline survey, a sample design was employed where schools were used as the primary sampling units. Stratification variables for the sample design included regional strata, which were divided into regions, cities, and counties as the first stratification. Further stratification within each regional stratum was based on the school. The population square root proportionate allocation method was applied to allocate samples within the city and county divisions of each institution, proportional to the square root of the number of children and adolescents in each stratum. Sample institutions were selected using systematic sampling proportional to the number of children and adolescents in each stratum, eventually selecting 58 elementary school sample institutions. The weights for children and adolescents were calculated by integrating design weights, nonresponse adjustment, and post-stratification adjustment. The most recent information for post-stratification came from the average of the 2018, 2019, and 2020 Population and Housing Census data. Design weights were defined as the inverse of the selection probabilities, and the sample institutions, as primary sampling units, were selected using the probability proportional to the measure of size method.

For the collection of biospecimens from children (infants, preschoolers, and elementary school students), only urine samples were collected. Parents of the survey participants collected urine samples the day before or the morning of the survey, stored them in a refrigerator, and filled out questionnaires on behalf of their children. On the survey day, a field survey team consisting of survey and sample transport personnel visited the sample childcare and educational institutions to collect the biospecimens and review the questionnaires completed by the parents. In the fourth cycle of Konens, 736 elementary school students were recruited in 2020.

Urine samples were collected in sterilized specimen cups (B08-134-505, All-pak, IL, USA). Participants were instructed to collect midstream urine specimens while wearing disposable vinyl gloves. Immediately after collection, the samples were capped, blocked from light using aluminium foil, sealed in plastic bags, and refrigerated at 2–6 °C. Spot urine samples were transferred to the laboratory within 24 hours under cool conditions in an

icebox and stored at -20 °C before analysis. During transportation, the position was tracked using a Global Positioning System (GPS) device, and the temperature was monitored in real-time. The transferred samples were divided into containers and stored frozen at -70 °C in polypropylene containers.

#### **Analysis of Urinary Heavy Metals**

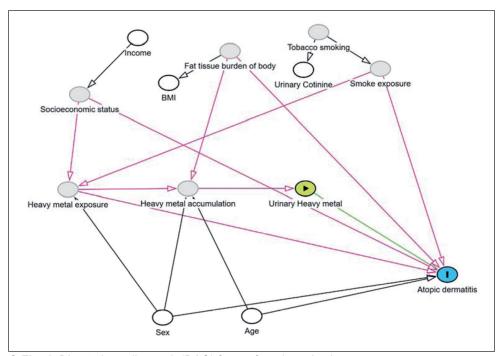
For cadmium analysis, a cadmium standard solution of 1,000 mg/L in 2% HNO3 (SPEX Certiprep, USA) was utilized. The analysis was performed using a Perkin Elmer 900Z (Perkin Elmer, Germany). The primary standard solution (1 mg Cd/L) was prepared by adding 0.1 mL of the cadmium standard solution (1,000 mg/L) to 100 mL of a 1% HNO3 dilution solution. The final standard solutions (0.5, 1, 2, 4, 6, 8  $\mu g$  Cd/L) were prepared by diluting aliquots of the primary standard solution (1 mg/L) with 1% HNO3 to a final volume of 100 mL.

For sample pretreatment, the frozen urine samples were thawed at room temperature for about 10 minutes. Using a micropipette, 0.1 mL of the supernatant was mixed with 0.3 mL of a diluent solution and 0.1 mL of distilled water, followed by thorough mixing. Similarly, control samples and reference materials (RMs) were prepared by pipetting 0.1 mL of each into 0.3 mL of the diluent solution and 0.1 mL of distilled water, then mixing thoroughly. The pretreated samples were then placed in tubes for GF-AAS analysis at a wavelength of 228.8 nm.

Urinary mercury levels were measured using a mercury analyser (Gold amalgamation direct mercury analyser, DMA-80, Milestones, Italy). The mercury standard solution (10 mg/L in 5% HNO3) from SPEX Certiprep was used as the standard material. The primary standard solution (0.25 mg Hg/L) was prepared by adding 2.5 mL of the mercury standard solution (10 mg/L) to 100 mL of distilled water, followed by gentle mixing. The final standard solutions (0.5, 1, 2.5, 5, 7.5, 10  $\mu g$  Hg/L) were prepared by diluting aliquots of the primary standard solution (0.25 mg/L) with distilled water to a final volume of 100 mL. For sample pretreatment, the frozen urine samples were thawed in a 37 °C water bath and thoroughly mixed using a vortex mixer. Using a micropipette, 0.1 mL of the supernatant was dispensed into a sample boat for analysis. The samples were analysed at a wavelength of 253.7 nm.

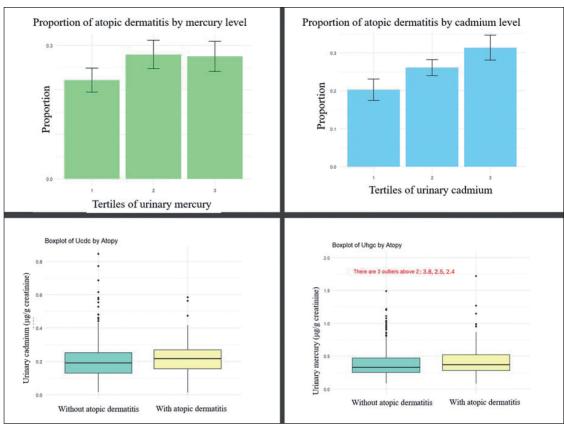
# **Analysis of Urinary Cotinine**

Cotinine levels were analysed using gas chromatography-mass spectrometry (GC-MS). An Elite-5MS or equivalent column (0.25 mm  $\times$  1  $\mu$ m  $\times$  30 m) was used. The standard materials were 99% (±)-cotinine (C10H12N2O) (Sigma Aldrich, USA) and 98 atom % (±)-Cotinine-d3 (N-methyl-d3) (CDN isotope, CA).


#### PART 2

#### **Confounder Selection**

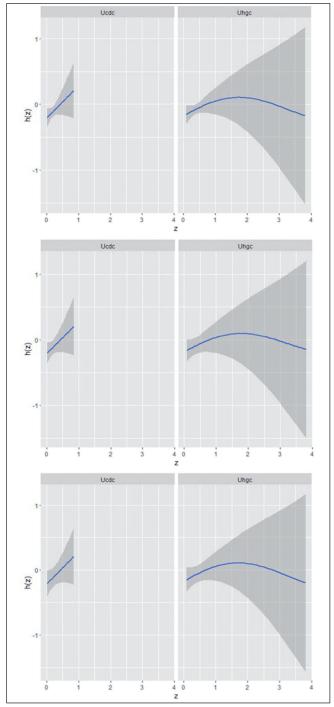
Confounders were selected based on their potential to influence both the exposure variable (heavy metals) and the outcome (atopic dermatitis). The variables sex, age, urinary cotinine, income, and body mass index (BMI) were identified as confounders that could potentially affect both the outcome and the independent variable. Sex was selected under the assumption that sex hormones influence both the metabolism of heavy metals (1) and the pathophysiology of atopic dermatitis (2). Age was considered because it is assumed that higher age correlates with prolonged exposure to heavy metals, leading to higher urinary concentrations, and because the prevalence of dermatitis varies with age (3). Since the outcome variable represents lifetime prevalence, age was deemed a necessary adjustment. Income was included as a proxy for socioeconomic status (SES) because previous studies have shown that SES can influence exposure to environmental pollutants such as heavy metals (4), and there is also a possible relationship between SES and atopic dermatitis, as proposed by the hygiene hypothesis, which suggests that frequent exposure to unsanitary conditions may reduce the risk of atopic dermatitis (5). Income was analysed in two categories: below 3 million KRW and above 3 million KRW. Respondents had the option to select "Do not respond" for their income within the survey items, and this was not treated as a missing value but rather considered a separate category for analysis. BMI, as an indicator of body fat (6), was included because fat has been reported to influence the development of atopic dermatitis, and there is a known association between BMI and atopic dermatitis (7). While heavy metals can affect fat metabolism, leading to obesity and fat accumulation, in this study, BMI was considered a confounder rather than a mediator, based on the hypothesis that more adipose tissue could lead to greater accumulation of heavy metals (8). Urinary cotinine, a marker of second-hand smoke exposure, was included because second-hand smoke can be a source of heavy metal exposure and is associated with the development of atopic dermatitis. The hypothesis that smoke itself has an impact on the prevalence of atopic dermatitis was also considered (9).


#### REFERENCES FOR CONFOUNDER SELECTION

- Rami Y, Ebrahimpour K, Maghami M, Shoshtari-Yeganeh B, Kelishadi R. The association between heavy metals exposure and sex hormones: a systematic review on current evidence. Biological Trace Element Research. 2022:1-20.
- Kanda N, Hoashi T, Saeki H. The Roles of Sex Hormones in the Course of Atopic Dermatitis. Int J Mol Sci. 2019;20(19):4660.
- Bylund S, Kobyletzki LB, Svalstedt M, Svensson A. Prevalence and Incidence of Atopic Dermatitis: A Systematic Review. Acta Derm Venereol. 2020;100(12):adv00160.
- Tyrrell J, Melzer D, Henley W, Galloway TS, Osborne NJ. Associations between socioeconomic status and environmental toxicant concentrations in adults in the USA: NHANES 2001-2010. Environment International. 2013;59:328-35.
- Bajwa H, Baghchechi M, Mujahid M, Dufour M-SK, Langan SM, Abuabara K. Mixed evidence on the relationship between socioeconomic position and atopic dermatitis: a systematic review. Journal of the American Academy of Dermatology. 2022;86(2):399-405.
- Hannan WJ, Wrate RM, Cowen SJ, Freeman CPL. Body-Mass Index as an Estimate of Body-Fat. International Journal of Eating Disorders. 1995;18(1):91-7.



S Fig. 1. Directed acyclic graph (DAG) for confounder selection.


- 7. Pavel P, Blunder S, Moosbrugger-Martinz V, Elias PM, Dubrac S. Atopic Dermatitis: The Fate of the Fat. Int J Mol Sci. 2022;23(4):2121.
- 8. Park S, Lee BK. Body fat percentage and hemoglobin levels are related to blood lead, cadmium, and mercury concentrations in a Korean Adult Population (KNHANES 2008-2010). Biol Trace Elem Res. 2013;151(3):315-23.
- Kantor R, Kim A, Thyssen JP, Silverberg JI. Association of atopic dermatitis with smoking: A systematic review and meta-analysis. J Am Acad Dermatol. 2016;75(6):1119-25 e1.



**S Fig. 2.** Lifetime prevalence of atopic dermatitis according to tertiles of mercury and cadmium, and box plots of mercury and cadmium levels by atopic dermatitis status.

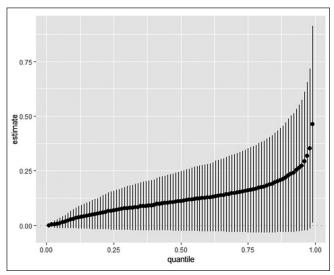
# **Bayesian Kernel Machine Regression Results of Urinary Cadmium, Mercury and Atopic Dermatitis**

The increase in the risk of atopic dermatitis according to changes in the quantiles of each substance was analysed using Bayesian kernel machine regression. From top to bottom, S Fig. 3 shows the change in log (OR) with quantile changes while fixing the other substances at the 5th percentile, 50th percentile, and 95th percentile, respectively. The lack of significant differences among the three parts of S Fig. 3 indicates that the interaction between the two variables is not pronounced.

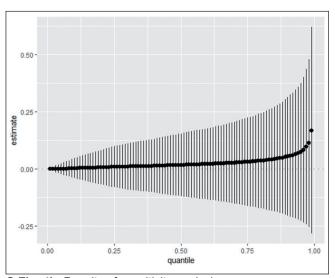


S Fig. 3. Bayesian kernel machine regression results.

**S Table 1.** Association between current symptoms of atopic dermatitis, current treatment of atopic dermatitis, and heavy metal exposure


|                                             | Outcome                                      | Atopic dermatitis v                 | vith symptom | Atopic dermatitis with treatment       |         |  |  |  |  |  |  |
|---------------------------------------------|----------------------------------------------|-------------------------------------|--------------|----------------------------------------|---------|--|--|--|--|--|--|
|                                             | Exposure variables                           | OR (95% CI)                         | p-value      | OR (95% CI)                            | p-value |  |  |  |  |  |  |
|                                             | Urinary cadmium                              | ,                                   |              |                                        |         |  |  |  |  |  |  |
|                                             | 1st tertile                                  | Reference                           |              | Reference                              |         |  |  |  |  |  |  |
| OR for individual model                     | 2nd tertile                                  | 1.3 (0.6–2.8)                       | 0.508        | 1.14 (0.3–4.36)                        | 0.849   |  |  |  |  |  |  |
| per each metal                              | 3rd tertile                                  | 2.39 (1.12–5.1)                     | 0.030        | 1.45 (0.42–5.01)                       | 0.562   |  |  |  |  |  |  |
| (as category for each                       | Urinary mercury                              |                                     |              |                                        |         |  |  |  |  |  |  |
| tertile)                                    | 1st tertile                                  | Reference                           |              | Reference                              |         |  |  |  |  |  |  |
|                                             | 2nd tertile                                  | 1.26 (0.67–2.35)                    | 0.475        | 1.14 (0.44–2.91)                       | 0.792   |  |  |  |  |  |  |
|                                             | 3rd tertile                                  | 1.02 (0.49–2.13)                    | 0.958        | 1.11 (0.35–3.51)                       | 0.854   |  |  |  |  |  |  |
| OR for individual model                     | Urinary cadmium (trend per tertile increase) | 1.01 (0.72–1.42)                    | 0.957        | 1.05 (0.6–1.85)                        | 0.856   |  |  |  |  |  |  |
| per each metals (trend increase of tertile) | Urinary mercury (trend per tertile increase) | 1.58 (1.08–2.31)                    | 0.024        | 1.21 (0.66–2.22)                       | 0.547   |  |  |  |  |  |  |
|                                             | Urinary cadmium                              |                                     |              |                                        |         |  |  |  |  |  |  |
|                                             | 1st tertile                                  | Reference                           |              | Reference                              |         |  |  |  |  |  |  |
|                                             | 2nd tertile                                  | 1.29 (0.6–2.76)                     | 0.518        | 1.15 (0.31–4.29)                       | 0.833   |  |  |  |  |  |  |
| Within one model                            | 3rd tertile                                  | 2.4 (1.13–5.09)                     | 0.028        | 1.44 (0.42–5.01)                       | 0.566   |  |  |  |  |  |  |
| (as category for each tertile)              | Urinary mercury                              |                                     |              |                                        |         |  |  |  |  |  |  |
| ,                                           | 1st tertile                                  | Reference                           |              | Reference                              |         |  |  |  |  |  |  |
|                                             | 2nd tertile                                  | 1.22 (0.65–2.29)                    | 0.538        | 1.12 (0.44–2.84)                       | 0.807   |  |  |  |  |  |  |
|                                             | 3rd tertile                                  | 0.94 (0.46–1.92) 0.866              |              | 1.09 (0.36–3.37)                       | 0.877   |  |  |  |  |  |  |
| Within one model (trend                     | Urinary mercury (trend per tertile increase) | 0.98 (0.7–1.38)                     | 0.913        | 1.05 (0.59–1.85)                       | 0.874   |  |  |  |  |  |  |
| increase of tertile)                        | Urinary cadmium (trend per tertile increase) | 1.58 (1.08–2.3)                     | 0.023        | 1.21 (0.65–2.22)                       | 0.552   |  |  |  |  |  |  |
|                                             | Complex exposure (WQS)                       | 1.75 (1.15–2.65)                    | 0.002        | 0.66 (4.12–0.11)                       | 0.123   |  |  |  |  |  |  |
| WQS                                         |                                              | Weight for mercury 0.29 (0.03–0.67) |              | Weight for mercury<br>0.46 (0.00–1.00) |         |  |  |  |  |  |  |
|                                             |                                              | Weight for cadmium 0.71 (0.33–0.97) |              | Weight for cadmium<br>0.52 (0.00–1.00) |         |  |  |  |  |  |  |
|                                             | Complex exposure (PSI)                       | 1.75 (1.1–2.78)                     | 0.019        | -0.40 (-1.12-0.31)                     | 0.367   |  |  |  |  |  |  |
| QGC                                         |                                              | Weight for mercury 0.10             |              | Weight for mercury 0.50                |         |  |  |  |  |  |  |
|                                             |                                              | Weight for cadmium 0.9              |              | Weight for cadmium 0.50                |         |  |  |  |  |  |  |

CI – confidence interval; OR – odds ratio; WQS – weighted quantile sum regression; QGC – quantile g-computation


# **Results of Sensitivity Analysis Using BKMR**

When the outcome variable was the presence of current symptoms of atopic dermatitis, the change in log (OR) with quantile changes in the complex exposure to mercury and cadmium was observed. Overall, a linear trend was noted; however, a significant difference was only observed between the 1st percentile and the 99th percentile (S Fig. 4a).

The results of WQS and GQC represent the change in OR for each increase in tertile.



S Fig. 4a. Results of sensitivity analysis.



S Fig. 4b. Results of sensitivity analysis.

# Summary Statistics of All Environmental Pollutants by Atopic Dermatitis Status and Results of Quantilebased G-computation Adjusted for All Environmental Pollutants

The KoNEHS Cycle 4 survey investigated various environmental exposure markers in urine samples. The analysed substances included heavy metals such as mercury and cadmium, polycyclic aromatic hydrocarbons like 1-hydroxypyrene,

2-naphthol, 2-hydroxyfluorene, and 1-hydroxyphenanthrene, as well as phthalate metabolites including mono-2-ethyl-5-hydroxyhexyl phthalate, mono-2-ethyl-5-oxohexyl phthalate, mono-butyl phthalate, mono-2-ethyl-5-carboxypentyl phthalate, mono-benzyl phthalate, and mono-3-carboxypropyl phthalate. Additionally, bisphenols such as bisphenol A, bisphenol F, and bisphenol S were measured, along with personal care product-related chemicals like triclosan, methyl paraben, ethyl paraben, propyl paraben, butyl paraben, and benzophenone-3. The survey also assessed pesticide exposure through 3-phenoxybenzoic acid and smoking-related biomarkers such as cotinine, trans,transmuconic acid, and benzyl mercapturic acid.

S Table 2. Biological exposure values of pollutants by atopic dermatitis status

| Variable | Total                 | With atopic dermatitis (lifetime prevalence) | Without atopic dermatitis | p-value |
|----------|-----------------------|----------------------------------------------|---------------------------|---------|
| BPS      | 0.15 (0.08, 0.29)     | 0.15 (0.08, 0.34)                            | 0.14 (0.08, 0.28)         | 0.22    |
| BPF      | 0.04 (0.02, 0.21)     | 0.04 (0.02, 0.27)                            | 0.05 (0.02, 0.21)         | 0.81    |
| OHP      | 0.08 (0.03, 0.15)     | 0.07 (0.03, 0.12)                            | 0.08 (0.04, 0.16)         | 0.06    |
| NAP      | 3.31 (1.67, 6.97)     | 2.93 (1.61, 6.97)                            | 3.40 (1.70, 6.93)         | 0.48    |
| OHFlu    | 0.35 (0.24, 0.50)     | 0.33 (0.25, 0.51)                            | 0.35 (0.24, 0.50)         | 0.99    |
| OHPhe    | 0.09 (0.03, 0.19)     | 0.10 (0.03, 0.18)                            | 0.09 (0.03, 0.20)         | 0.73    |
| MEHHP    | 21.32 (13.20, 33.20)  | 22.06 (15.16, 35.75)                         | 20.64 (12.33, 32.35)      | 0.02    |
| MEOHP    | 14.36 (8.90, 21.45)   | 15.24 (10.13, 23.53)                         | 13.82 (8.29, 21.05)       | 0.02    |
| MnBP     | 29.71 (19.58, 44.18)  | 32.75 (20.23, 48.05)                         | 28.70 (19.27, 42.79)      | 0.12    |
| MECPP    | 34.58 (21.91, 52.87)  | 35.54 (25.88, 56.13)                         | 33.91 (21.10, 50.48)      | 0.06    |
| MBzP     | 1.67 (0.67, 3.54)     | 2.17 (0.76, 4.87)                            | 1.50 (0.65, 3.05)         | 0.00    |
| MCPP     | 0.51 (0.33, 0.85)     | 0.54 (0.34, 0.92)                            | 0.50 (0.32, 0.83)         | 0.15    |
| MEP      | 4.53 (2.67, 9.86)     | 4.57 (3.02, 10.84)                           | 4.49 (2.51, 9.79)         | 0.12    |
| MMP      | 3.32 (2.18, 5.22)     | 3.31 (2.27, 5.01)                            | 3.33 (2.16, 5.35)         | 0.71    |
| BPA      | 1.51 (0.74, 3.06)     | 1.62 (0.79, 2.98)                            | 1.46 (0.72, 3.06)         | 0.41    |
| TCS      | 0.22 (0.10, 0.55)     | 0.28 (0.13, 0.67)                            | 0.21 (0.09, 0.49)         | 0.00    |
| MP       | 7.23 (3.46, 46.20)    | 8.61 (3.68, 88.02)                           | 6.80 (3.41, 35.20)        | 0.12    |
| EP       | 19.99 (3.00, 96.85)   | 23.18 (3.84, 96.85)                          | 19.79 (2.81, 90.88)       | 0.64    |
| PP       | 0.54 (0.18, 2.43)     | 0.67 (0.21, 3.98)                            | 0.50 (0.17, 2.09)         | 0.05    |
| BP       | 0.56 (0.29, 0.95)     | 0.56 (0.30, 0.92)                            | 0.56 (0.28, 0.97)         | 0.74    |
| BP_3     | 0.67 (0.28, 1.72)     | 0.71 (0.33, 1.59)                            | 0.64 (0.27, 1.73)         | 0.65    |
| tt_MA    | 61.98 (34.72, 104.65) | 59.74 (37.08, 99.64)                         | 61.98 (34.07, 106.85)     | 0.71    |
| BMA      | 5.95 (4.04, 9.62)     | 6.93 (4.24, 11.55)                           | 5.72 (3.99, 9.22)         | 0.01    |

OHP – 1-hydroxypyrene; NAP – 2-naphthol; OHFlu – 2-hydroxyfluorene; OHPhe – 1-hydroxyphenanthrene; MEHHP – mono-2-ethyl-5-hydroxyhexyl phthalate; MEOHP – mono-2-ethyl-5-oxohexyl phthalate; MnBP – mono-butyl phthalate; MECPP – mono-2-ethyl-5-carboxypentyl phthalate; MBzP – mono-benzyl phthalate; MCPP – mono-3-carboxypropyl phthalate; MEP – mono-ethyl phthalate; MMP – mono-methyl phthalate; BPA – bisphenol A; BPF – bisphenol F; BPS – bisphenol S; TCS – triclosan; MP – methyl paraben; EP – ethyl paraben; PP – propyl paraben; BP – butyl paraben; BP – benzophenone-3; PBA – 3-phenoxybenzoic acid; COT – cotinine, tt\_MA – trans,trans-muconic acid, BMA – benzyl mercapturic acid

Numbers are presented as median (25 percentile, 75 percentile).

**S Table 3.** Frequency distribution of biological exposure values for all pollutants categorized into tertiles by atopic dermatitis status

| Variable | Tertile | Total    |             |             | With atopic dermatitis (lifetime prevalence) |             |             | Without atopic dermatitis |             |             |         |
|----------|---------|----------|-------------|-------------|----------------------------------------------|-------------|-------------|---------------------------|-------------|-------------|---------|
|          |         | Raw<br>n | Estimated n | Estimated % | Raw<br>n                                     | Estimated n | Estimated % | Raw<br>n                  | Estimated n | Estimated % | p-value |
|          | 1st     | 256      | 915449.1    | 34.8        | 57                                           | 219392.8    | 31.5        | 199                       | 696056.3    | 35.9        |         |
| BPS      | 2nd     | 238      | 917035.7    | 32.3        | 58                                           | 232140.0    | 32.0        | 180                       | 684895.6    | 32.4        | 0.51    |
|          | 3rd     | 242      | 911038.2    | 32.9        | 66                                           | 258499.0    | 36.5        | 176                       | 652539.2    | 31.7        |         |
|          | 1st     | 247      | 915213.6    | 33.6        | 60                                           | 238670.4    | 33.1        | 187                       | 676543.3    | 33.7        | 0.91    |
| BPF      | 2nd     | 243      | 916388.1    | 33.0        | 55                                           | 229203.9    | 30.4        | 188                       | 687184.2    | 33.9        |         |
|          | 3rd     | 246      | 911921.3    | 33.4        | 66                                           | 242157.6    | 36.5        | 180                       | 669763.7    | 32.4        |         |
|          | 1st     | 239      | 918126.0    | 32.5        | 62                                           | 258301.9    | 34.3        | 177                       | 659824.2    | 31.9        |         |
| OHP      | 2nd     | 244      | 912246.9    | 33.2        | 67                                           | 271742.9    | 37.0        | 177                       | 640504.0    | 31.9        | 0.03    |
|          | 3rd     | 253      | 913150.1    | 34.4        | 52                                           | 179987.1    | 28.7        | 201                       | 733163.0    | 36.2        |         |
|          | 1st     | 249      | 915124.2    | 33.8        | 60                                           | 237485.6    | 33.1        | 189                       | 677638.6    | 34.1        |         |
| NAP      | 2nd     | 247      | 918102.4    | 33.6        | 60                                           | 234553.1    | 33.1        | 187                       | 683549.3    | 33.7        | 0.98    |
|          | 3rd     | 240      | 910296.4    | 32.6        | 61                                           | 237993.2    | 33.7        | 179                       | 672303.2    | 32.3        |         |
|          | 1st     | 258      | 915449.6    | 35.1        | 62                                           | 246654.9    | 34.3        | 196                       | 668794.7    | 35.3        |         |
| OHFlu    | 2nd     | 240      | 915526.4    | 32.6        | 60                                           | 220969.4    | 33.1        | 180                       | 694557.0    | 32.4        | 0.70    |
|          | 3rd     | 238      | 912547.0    | 32.3        | 59                                           | 242407.6    | 32.6        | 179                       | 670139.4    | 32.3        |         |
|          | 1st     | 238      | 915055.8    | 32.3        | 54                                           | 218753.8    | 29.8        | 184                       | 696302.0    | 33.2        | 0.60    |
| OHPhe    | 2nd     | 253      | 916485.0    | 34.4        | 68                                           | 258223.4    | 37.6        | 185                       | 658261.6    | 33.3        |         |
|          | 3rd     | 245      | 911982.3    | 33.3        | 59                                           | 233054.7    | 32.6        | 186                       | 678927.6    | 33.5        |         |
| MEHHP    | 1st     | 249      | 915972.7    | 33.8        | 46                                           | 181874.7    | 25.4        | 203                       | 734098.0    | 36.6        | 0.06    |
|          | 2nd     | 247      | 915570.6    | 33.6        | 67                                           | 263530.2    | 37.0        | 180                       | 652040.4    | 32.4        |         |
|          | 3rd     | 240      | 911979.7    | 32.6        | 68                                           | 264627.0    | 37.6        | 172                       | 647352.6    | 31.0        |         |
|          | 1st     | 252      | 918252.3    | 34.2        | 48                                           | 186711.1    | 26.5        | 204                       | 731541.3    | 36.8        | 0.05    |
| MEOHP    | 2nd     | 241      | 912764.6    | 32.7        | 65                                           | 266026.2    | 35.9        | 176                       | 646738.4    | 31.7        |         |
| IVILOTTI | 3rd     | 243      | 912506.0    | 33.0        | 68                                           | 257294.6    | 37.6        | 175                       | 655211.5    | 31.5        |         |
| MnBP     | 1st     | 253      | 914893.7    | 34.4        | 57                                           | 218372.3    | 31.5        | 196                       | 696521.4    | 35.3        | 0.59    |
|          | 2nd     | 249      | 915493.1    | 33.8        | 60                                           | 233548.2    | 33.1        | 189                       | 681944.9    | 34.1        |         |
| WIIIDI   | 3rd     | 234      | 913136.1    | 31.8        | 64                                           | 258111.3    | 35.4        | 170                       | 655024.8    | 30.6        |         |
|          | 1st     | 252      | 917561.4    | 34.2        | 51                                           | 191359.2    | 28.2        | 201                       | 726202.2    | 36.2        |         |
| MECPP    | 2nd     | 242      | 915557.9    | 32.9        | 64                                           | 263042.4    | 35.4        | 178                       | 652515.5    | 32.1        | 0.13    |
|          | 3rd     | 242      | 910403.7    | 32.9        | 66                                           | 255630.4    | 36.5        | 176                       | 654773.4    | 31.7        |         |
|          | 1st     | 248      | 916588.2    | 33.7        | 51                                           | 203043.5    | 28.2%       | 197                       | 713544.7    | 35.5        |         |
| MBzP     | 2nd     | 240      | 914664.7    | 32.6        | 53                                           | 204083.4    | 29.3        | 187                       | 710511.7    | 33.7        | 0.01    |
| IVIDZĽ   | 3rd     | 248      | 912270.1    | 33.7        | 77                                           | 302905.0    | 42.5        | 171                       | 609365.1    | 30.8        |         |
| MCPP     | 1st     | 246      | 916146.8    | 33.4        | 53                                           | 215328.7    | 29.3        | 193                       | 700818.1    | 34.8        | 0.24    |
|          | 2nd     | 242      | 915282.2    | 32.9        | 55                                           | 221244.6    | 30.4        | 187                       | 694037.5    | 33.7        |         |
|          | 3rd     | 248      | 912094.0    | 33.7        | 73                                           | 273458.6    | 40.3        | 175                       | 638635.4    | 31.5        |         |
|          | 1st     | 248      | 916525.4    | 33.7        | 57                                           | 207746.5    | 31.5        | 191                       | 708778.9    | 34.4        |         |
| MEP      | 2nd     | 240      | 916192.1    | 32.9        | 60                                           | 244306.7    | 33.1        | 182                       | 671885.4    | 32.8        | U 28    |
| IVILI"   | 3rd     | 242      | 910805.5    | 33.4        | 64                                           | 257978.7    | 35.4        | 182                       | 652826.8    | 32.8        | 0.28    |
|          | +       |          |             |             |                                              |             |             |                           | 691274.7    |             |         |
| MMD      | 1st     | 250      | 914899.3    | 34.0        | 58                                           | 223624.6    | 32.0        | 192                       | +           | 34.6        | 0.54    |
| MMP      | 2nd     | 247      | 918180.1    | 33.6        | 69                                           | 267939.8    | 38.1        | 178                       | 650240.4    | 32.1        | 0.51    |
|          | 3rd     | 239      | 910443.5    | 32.5        | 54                                           | 218467.5    | 29.8        | 185                       | 691976.1    | 33.3        |         |

Continued on the next page

Continued from the previous page

| Variable | Tertile | Total    |             | With atopic dermatitis (lifetime prevalence) |          |             | Without atopic dermatitis |          |             |             |         |
|----------|---------|----------|-------------|----------------------------------------------|----------|-------------|---------------------------|----------|-------------|-------------|---------|
| Variable |         | Raw<br>n | Estimated n | Estimated %                                  | Raw<br>n | Estimated n | Estimated %               | Raw<br>n | Estimated n | Estimated % | p-value |
| BPA      | 1st     | 250      | 920351.9    | 34.0                                         | 54       | 214808.6    | 29.8                      | 196      | 705543.3    | 35.3        | 0.31    |
|          | 2nd     | 240      | 909114.0    | 32.6                                         | 66       | 266476.6    | 36.5                      | 174      | 642637.4    | 31.4        |         |
|          | 3rd     | 246      | 914057.0    | 33.4                                         | 61       | 228746.7    | 33.7                      | 185      | 685310.4    | 33.3        |         |
|          | 1st     | 245      | 918177.4    | 33.3                                         | 48       | 189733.0    | 26.5                      | 197      | 728444.3    | 35.5        |         |
| TCS      | 2nd     | 253      | 914226.7    | 34.4                                         | 61       | 236131.4    | 33.7                      | 192      | 678095.2    | 34.6        | 0.04    |
|          | 3rd     | 238      | 911119.0    | 32.3                                         | 72       | 284167.4    | 39.8                      | 166      | 626951.5    | 29.9        |         |
|          | 1st     | 237      | 918520.7    | 32.2                                         | 54       | 217396.5    | 29.8                      | 183      | 701124.1    | 33.0        | 0.53    |
| MP       | 2nd     | 242      | 912488.3    | 32.9                                         | 59       | 232161.2    | 32.6                      | 183      | 680327.0    | 33.0        |         |
|          | 3rd     | 257      | 912514.1    | 34.9                                         | 68       | 260474.1    | 37.6                      | 189      | 652040.0    | 34.1        |         |
|          | 1st     | 256      | 917016.0    | 34.8                                         | 60       | 226111.9    | 33.1                      | 196      | 690904.2    | 35.3        | 0.79    |
| EP       | 2nd     | 243      | 916199.9    | 33.0                                         | 59       | 237507.5    | 32.6                      | 184      | 678692.4    | 33.2        |         |
|          | 3rd     | 237      | 910307.0    | 32.2                                         | 62       | 246412.5    | 34.3                      | 175      | 663894.6    | 31.5        |         |
|          | 1st     | 244      | 915723.6    | 33.2                                         | 51       | 200191.5    | 28.2                      | 193      | 715532.2    | 34.8        | 0.24    |
| PP       | 2nd     | 240      | 915815.2    | 32.6                                         | 61       | 243150.0    | 33.7                      | 179      | 672665.2    | 32.3        |         |
|          | 3rd     | 252      | 911984.2    | 34.2                                         | 69       | 266690.4    | 38.1                      | 183      | 645293.8    | 33.0        |         |
|          | 1st     | 241      | 917794.2    | 32.7                                         | 58       | 232499.7    | 32.0                      | 183      | 685294.5    | 33.0        | 0.97    |
| BP       | 2nd     | 245      | 916073.0    | 33.3                                         | 59       | 238679.4    | 32.6                      | 186      | 677393.7    | 33.5        |         |
|          | 3rd     | 250      | 909655.8    | 34.0                                         | 64       | 238852.8    | 35.4                      | 186      | 670803.0    | 33.5        |         |
|          | 1st     | 241      | 918718.8    | 32.7                                         | 53       | 214311.3    | 29.3                      | 188      | 704407.5    | 33.9        | 0.55    |
| BP_3     | 2nd     | 246      | 912102.1    | 33.4                                         | 66       | 260204.7    | 36.5                      | 180      | 651897.4    | 32.4        |         |
|          | 3rd     | 249      | 912702.1    | 33.8                                         | 62       | 235515.9    | 34.3                      | 187      | 677186.2    | 33.7        |         |
| tt_MA    | 1st     | 247      | 916569.1    | 33.6                                         | 60       | 232508.4    | 33.1                      | 187      | 684060.6    | 33.7        | 0.67    |
|          | 2nd     | 244      | 914569.9    | 33.2                                         | 63       | 255513.6    | 34.8                      | 181      | 659056.4    | 32.6        |         |
|          | 3rd     | 245      | 912384.0    | 33.3                                         | 58       | 222009.9    | 32.0                      | 187      | 690374.1    | 33.7        |         |
|          | 1st     | 250      | 916726.6    | 34.0                                         | 49       | 196993.3    | 27.1                      | 201      | 719733.2    | 36.2        |         |
| BMA      | 2nd     | 243      | 912430.2    | 33.0                                         | 56       | 229720.6    | 30.9                      | 187      | 682709.6    | 33.7        | 0.14    |
|          | 3rd     | 243      | 914366.2    | 33.0                                         | 76       | 283317.9    | 42.0                      | 167      | 631048.3    | 30.1        |         |

Uhg – mercury; Ucd – cadmium; OHP – 1-hydroxypyrene; NAP – 2-naphthol; OHFlu – 2-hydroxyfluorene; OHPhe – 1-hydroxyphenanthrene; MEHHP – mono-2-ethyl-5-oxohexyl phthalate; MEDHP – mono-2-ethyl-5-oxohexyl phthalate; MBP – mono-butyl phthalate; MECPP – mono-2-ethyl-5-carboxypentyl phthalate; MBP – mono-benzyl phthalate; MPP – mono-3-carboxypropyl phthalate; MPP – mono-ethyl phthalate; MPP – mono-methyl phthalate; BPA – bisphenol A; BPF – bisphenol F; BPS – bisphenol S; TCS – triclosan; MP – methyl paraben; EP – ethyl paraben; PP – propyl paraben; BP – butyl paraben; BP – benzophenone-3; PBA – 3-phenoxybenzoic acid; COT – cotinine, tt\_MA – trans,trans-muconic acid; BMA – benzyl mercapturic acid All urinary biological exposure indices concentrations are expressed in µg/g creatinine.

**S Table 4.** Association between heavy metal complex exposure and atopic dermatitis in a fully adjusted model controlling for all pollutants and potential confounders

|     |                         | OR (95% CI)       | p-value |
|-----|-------------------------|-------------------|---------|
| QGC | Complex exposure        | 1.69 (1.24, 2.30) | 0.001   |
|     | Weight for mercury 0.49 |                   |         |
|     | Weight for cadmium 0.51 |                   |         |

CI – confidence interval; OR – odds ratio; QGC – quantile g-computation Adjusted for confounders and all biological exposure index presented previously.