Effectiveness of chlorine, organic acids and UV treatments in reducing *Escherichia coli* O157:H7 and *Yersinia enterocolitica* on apples

Escudero M.E., Velázquez L., Favier G., de Guzmán A.M.S.

Department of Microbiology, Faculty of Chemistry, Biochemistry and Pharmacology, National University, San Luis, Argentina

SUMMARY

This study assessed the effectiveness of 200 and 500 ppm of chlorine and organic acids (0.5 % lactic acid and 0.5% citric acid) in wash solutions, and UV radiation for reducing *Escherichia coli* O157:H7 and *Yersinia enterocolitica* on apples contaminated by two different methods. Residual levels of these pathogens after different treatments were compared. On dip inoculated apples, *Y. enterocolitica* reductions of 2.66 and 2.77 logs were obtained with 200 and 500 ppm chlorine combined with 0.5% lactic acid, respectively. The *E. coli* O157:H7 population decreased 3.35 log with 0.5% lactic acid wash solution, and 2.72 and 2.62 logs after 500 ppm chlorine and 500 ppm chlorine plus 0.5% lactic acid treatments, respectively.

Similar reductions were obtained with UV radiation. On spot inoculated apples, significant (p<0.05) decreases of 4.67 and 4.58 logs were observed in *E. coli* O157:H7 and *Y. enterocolitica* levels, respectively, after 500 ppm chlorine plus 0.5% lactic acid treatment as compared with the control. In sectioned apples, microorganisms infiltrated in inner core region and pulp were not significantly (p<0.05) affected by disinfection treatments. No pathogens were detected in the natural microflora on apples. Reductions such as those obtained with 500 ppm chlorine plus 0.5% lactic acid solution were very proximal to the 5-log score required by FDA for apple disinfection.

Key words: Escherichia coli O157:H7, Yersinia, apples, disinfection, chlorine, UV radiation, organic acids

Address for correspondence: A.M.S. de Guzmán. Microbiología General, Universidad Nacional de San Luis. Chacabuco y Pedernera. (5700) San Luis, Argentina. E-mail: mescude@unsl.edu.ar