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SUMMARY
In epidemiology, it is very important to estimate the baseline incidence of infectious diseases. From this baseline, the epidemic threshold can 

be derived as a clue to recognize an excess incidence, i.e. to detect an epidemic by mathematical methods. Nevertheless, a problem is posed by 
the fact that the incidence may vary during the year, as a rule, in a season dependent manner. To model the incidence of a disease, some authors 
use seasonal trend models. For instance, Serfling applies the sine function with a phase shift and amplitude. A similar model based on the analysis 
of variance with kernel smoothing and Serfling’s higher order models, i.e. models composed of multiple sine-cosine function pairs with a variably 
long period, will be presented below. Serfling’s model uses a long-term linear trend, but the linearity may not be always acceptable. Therefore, a 
more complex, long-term trend estimation will also be addressed, using different smoothing methods. In addition, the issue of the time unit (mostly 
a week) used in describing the incidence is discussed.
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INTRODUCTION

The surveillance systems operated in the Czech Republic, i.e. 
the system of surveillance of acute respiratory infections (ARI) 
including influenza-like illnesses (ILI) and the EpiDat system for 
surveillance of other infectious diseases, will be used to illustrate 
the methods proposed. The data pool available for this purpose 
includes ARI data since 1982, ILI data since 2004, as well as the 
data on other infectious diseases reportable to the EpiDat system 
such as varicella (B01) since 1993. Although the diseases listed as 
well as other diseases have been monitored in the Czech Republic 
much longer, for the reason of comparability of data from different 
years, only the data from the period where both the surveillance 
systems, i.e. EpiDat and ARI, were in place will be used (1, 2).

The situation is simpler in ARI where the data are collected 
as the numbers of patients per calendar week. For the infections 
monitored in the EpiDat system, the situation is complicated by the 
fact that two types of dates are entered in it: the disease report date 
(indicated by the physician) or the date of the onset of symptoms.

In general, the data need to be aggregated into longer time 
intervals than the reporting units which are often very short, e.g 
the EpiDat reporting unit is one day (considering days implies 
the problems of small numbers and weekly periodicity). By ag-
gregating data into years, such problems are avoided, but the 
model only depicts a long-term trend, whose shape can vary 
over years, including multiple-year periodicity, but is not able to 
reflect the fluctuations in the incidence during the year.  Annual 
aggregation does not pose any problem in terms of the seasonal 
variation, as the years are practically of equal length and the year 

spans all seasons which may influence the incidence of a disease. 
Nevertheless, this type of aggregation does not allow for the 
prediction for shorter time periods such as one week which may 
be a crucial unit for many diseases.

Using the calendar units has some drawbacks, since the months 
vary in length and the length of the year is not a multiple of the 
length of one week (when the year is divided into seven-day 
periods, 1.25 day is in excess, i.e. one day every year plus one 
day every leap year). When modelling the incidence of a disease 
requiring daily data, this problem can be solved as follows: a suit-
able time unit will not be a calendar week but a serial week, with 
seven-day weeks counted from the very beginning of the year (1 
January), i.e. week 1 for the first seven days, week 2 for the second 
seven days, and so on. Instead of seven days, the last serial week, 
week 52, will thus contain eight or even nine days in the leap years. 
Anyway, from the point of view of disease reporting, the last week 
of the year is problematic in nature as it is exceptional. Although 
far from being ideal, this approach has the advantage of grouping 
all exceptional days into one defined week; of course, with the 
exception of Easter which needs separate attention.

Another factor to be considered is the type of the date reported. 
E.g. two different dates are entered in the EpiDat system, i.e. the 
disease report date and the date of the onset of symptoms. The 
situation may be interpreted differently depending on the type of 
the date reported, but the mathematical models used do not differ. 
From the medical perspective, the date of the onset of symptoms 
is more relevant.

When working with the ARI or ILI data, calendar weeks should 
be used, since the system does not gather data on individual cases 
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but age aggregate data on the weekly numbers of cases. Concerning 
these weekly data, the issue of weeks needs to be approached dif-
ferently. Calendar week 53 is incomplete, similarly to week 1 of the 
following year, and therefore, it will be reasonable to merge them 
into one week, i.e. week 1 of the following year. Consequently, a 
similar effect will be produced as described above for the serial 
weeks. It will also result in an inaccuracy, although of a different 
nature. The week at the turn of the year includes a variable number 
of days of the Christmas holiday period that influences human 
behaviour, including the willingness to see a doctor. Similarly, 
other holidays may not overlap with the calendar weeks. The 
model generated will serve for estimating the expected incidence 
of a disease and for determining the cut-off for excess incidence. 
It will require smoothing and the inaccuracy resulting from using 
the above specified time units is considered as insignificant. 

The statistical and epidemiological methods and terminology 
used in this paper are specified in works by Armitage and Colton, 
and Fleming et al. (1, 3). 

MATERIALS AND METHODS

Another aim is to determine the baseline, expected incidence 
(number of cases divided by the total of the population monitored) 
depending on the season (week of the onset of symptoms), cyclic 
variations and long-term trend. Let us assume the incidence has a log-
normal distribution, with the average that varies depending on both 
the season and long-term trend. Several variants of the estimation of 
the long-term trend and annual periodicity pattern will be presented. 
Different methods are used to adjust for the long-term and seasonal 
trends (4–7). They are very similar to those for estimating excess 
deaths (8–12). All computations were made in the R software (12)*.

One of the aims of modelling the incidence is to find the ex-
pected, mean, time-dependent baseline and mainly to determine the 
epidemic threshold which identifies outliers. This threshold can be 
defined as the prediction interval in the respective time – i.e. a cut-
off which is exceeded in the selected percentage of the weeks only.

To describe the methods, the following symbols are used: 
inc, vector of the incidence rates observed and yw, vector of the 
respective weeks 

yw = 52 ∙ y + w

where y is the year and w is the week in which the respective 
incidence was observed.

First of all, the simplest model without cyclicity will be 
presented, i.e. the model that assumes a constant incidence (the 
logarithm of incidence) throughout the year, i.e.:

lm(log(inc)~1)

From the perspective of the seasonal trend of the disease, this 
model is very simple. It assumes the incidence of ILI is constant 
throughout the year (Fig. 1). The grey zone in the picture repre-
sents the 95% prediction limits for a log-normal distribution of 
the incidence, it means that the borderline separates 5% of the 
highest values that are the most distanced outliers relative to the 
baseline. It is the threshold sought. The selection of the percent-
age is a matter of personal preference. The model in this picture 
represents the commonly used threshold but does not take into 
account any variation with time. As the model considered here is 
constant, the model or epidemic threshold can be characterized 
by a single value, as shown in Figure 1.

The epidemic threshold can be calculated by computing the 
prediction interval for the non-anti-logged estimated baseline μ 
from α quantile normal distribution uα and estimated standard 
deviation σ:

eμ ± uα ∙ σ

More precisely, the incidence is 95% likely to be below the 
constructed borderline (the assumption is erroneous in five per-
cent of cases).

Evidently, the model in Figure 1 does not reflect the seasonal 
trend or any other long-term trend in the disease (nevertheless, 
the data in the figure seem to be declining). The simplest way to 
model a drop is to use a linear model. For the linear model of the 
incidence of ILI (Fig. 2), a linear term, yw, is added:

lm(log(inc)~yw)

Fig. 1. Model of the incidence of 
ILI constant in time regardless 
of seasonality.

*The R Project for Statistical Computing, http://www.R-project.org
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Here, it is not possible to use a single number to describe the 
baseline incidence or epidemic threshold, but a similar calculation 
is applied, except that the estimation in time yw is used instead 
of μ. A more complicated model with an order 2 polynomial is 
constructed as follows:

lm(log(inc)~yw+I(yw^2))

Attention will be paid to the seasonality which is a key char-
acteristic of ILI.

Many diseases with a cyclic trend are often represented as a line 
chart spanning several years (Fig. 3). The last year is compared to 
the other years as a whole, e.g. to a bundle of years 2011 to 2015.

Figure 3 clearly shows the annual periodicity, but any long-
term trend is difficult to consider. Therefore, various models are 
generated encompassing a long-term trend. One of these, often 
applied in practice, is the model using trigonometric functions, 
called Serfling’s model (12). It uses, apart from the long-term 
linear trend, a cyclic component (trigonometric function) to 
model annual periodicity. To this end, the serial week number   
is multiplied by 2π so that one year represents one period. The 
following model will be used:

lm(log(inc)~yw+sin(2*pi*yw/52)+cos(2*pi*yw/52))

Thus, the timeline of incidences is fit with the weighted sum 
of the sine and cosine functions with the equal period, which is 
equivalent to fitting the sine function with two parameters – the 
amplitude (wave height) and the phase shift. This record using 
the sine and cosine functions is more suitable for calculating the 
model parameters, the amplitude and shift, which are helpful in 
the interpretation. The model is represented in Figure 4.

The parameters with the sine and cosine functions are difficult to 
interpret (let us designate them γcos and γsin) but can be easily converted 
to the amplitude (Ampl) and phase shift (φ) which are much helpful. 
When considering the simplest Serfling’s order 1 model, which uses 
the sine function while estimating two para-meters determining the 
amplitude and shift and the linear trend, it can be expressed as follows:

γsin ∙ sin(t) + γcos ∙ cos(t) + γ0 + γ1 ∙ t + γ2 ∙ t2

where the coefficients are estimated. The coefficients sin and 
cos are the coefficients of the respective trigonometric func-
tions and the coefficients 0, 1, and 2 are the constant, linear, and 
quadratic terms. However, the interpretation of these coefficients 
poses a minor problem. As indicated above, it is more suitable to 
switch to the following model:

Ampl ∙ sin(t + φ)

Fig. 3. Weekly incidence of ARI 
over several years.

Fig. 2. Model of the incidence of 
ILI linearly depen-dent on time 
regardless of seasonality.
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where Ampl is the amplitude of the model and φ is the time 
shift. These coefficients are much easier to interpret.

They are calculated from the coefficients obtained as follows:

and

The initial parametrization is very helpful in the calculation 
of an estimate. However, the estimated parameters should be 
converted using the formulas above. The following function can 
be used in R for this purpose:

> Am_pos<-function(a)
+ {
+ fi<-atan(a[2]/a[1])
+ Am<-a[1]/(cos(fi))
+ p<-c(Am,fi)
+ names(p)<-c("Amplitude","Shift")
+ p
+ }

Thus, it is possible to get both the sine and cosine coefficients 
equal to 1 and the following is obtained:

> Am_pos(c(1,1))
Amplitude Shift
1.4142136 0.7853982
>

This model has the disadvantage of being too smooth (looks 
artificial) which is not consistent with the modelled timeline. 
One of the ways to improve this model is fitting the sum of the 
sine functions with a variable period length (half, third or quarter 
length). It can be called Serfling’s order r model. Such a model 
(e.g. order r = 5) is calculated as follows:

lm(log(inc)~yw+sin(2*pi*yw/52)+cos(2*pi*yw/52)
	 +I(sin(2*2*pi*yw/52))+I(cos(2*2*pi*yw/52))
	 +I(sin(3*2*pi*yw/52))+I(cos(3*2*pi*yw/52))
	 +I(sin(4*2*pi*yw/52))+I(cos(4*2*pi*yw/52))
	 +I(sin(5*2*pi*yw/52))+I(cos(5*2*pi*yw/52)))

The phase shift and amplitude can also be calculated for the 
seasonality parts thus obtained. This model is represented in Fig. 5.

Another possible way to model the incidence of a disease is 
derived from the analysis of variance. Such a model is proposed 
in the present study and is called the ANOVA model. The serial 
week number is considered a categorical quantity. 

Fig. 4. Serfling’s order 1 model 
for the incidence of ARI.

Fig. 5. Serfling’s order 5 mod-
el for the incidence of ARI.
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For a specific week in different years, the mean (geometric 
mean because of the log normal distribution) is counted and 
drawn. To calculate this model, the following formula is used:

lm(log(inc)~0+as.factor(w))

But the model in Fig. 6 does not contain any long-term trend. 
Not using INTERCEPT does not matter, it can be even helpful 
in drawing the model (there is no need to sum up the parameters 
for individual weeks with the INTERCEPT, but it is present in 
the estimated parameters). This model has the advantage of not 
assuming the seasonality to be symmetrical in shape (unlike 
trigonometric functions) and is similar to Serfling’s high order 
model. It has the disadvantage of using a rather rugged model 
of the period and not taking into account a linear trend as is 
contained in Serfling’s model. The estimate’s ruggedness can 
be overcome by using a kernel estimate with a triangular kernel 
with the highest weight put in the centre and decreasing towards 
the extremities of the window. The result of smoothing for an 
annual cycle is illustrated in Fig. 7. While smoothing, it should 
be kept in mind that the model is cyclically repetitive from year 
to year and therefore, the kernel at the end of one year needs to 
be joined to the beginning of the next year (R language function). 

Such smoothing should better be done prior to the addition of 
a long-term trend, if any, since consequently, smoothing at the 
beginning and at the end of the series is simplified. The extent 
of smoothing can be selected based on the window’s width and 
weight values. 

To smooth this model, it is possible to use the kernel estimate 
computed with the following algorithm:

kl3tyd<-function(oh){
	 o<-NA
	 o[1]<-(oh[52]+2*oh[1]+oh[2])
	 for(i in 2:51) o[i]<-(oh[i-1]+2*oh[i]+oh[i+1])/4
	 o[52]<-(oh[51]+2*oh[52]+oh[1])/4
	 o
}

which considers a three-week window and puts double weight 
on the central value in comparison with both extremities. For the 
first or the last week of the year, the model benefits from the fact 
that the last week of the previous year is followed by the first week 
of the next year and the values are expected to be unchanged, with 
the exception of the long-term trend. The long-term trend will be 
taken into account in the resultant estimate.

Fig. 7. ANOVA model for sea-
sonality in the incidence of ARI 
prior to (dotted line) and after 
(full line) smoothing.

Fig. 6. ANOVA model for the 
incidence of ILI without trend.
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To achieve a higher smoothing effect, the function below can 
be used which considers a five-week window:

kl5tyd<-function(oh){
	 o<-NA
	 o[1]<-(.5*oh[51]+oh[52]+2*oh[1]+oh[2]+.5*	

	 oh[3])/5
	 o[2]<-(.5*oh[52]+oh[1]+2*oh[2]+oh[3]+.5*oh[4])/5
	 for(i in 3:50){
	 o[i]<-(.5*oh[i-2]+oh[i-1]+2*oh[i]+oh[i+1]+.5*oh[i+2])/5
	 }
	 o[51]<-(.5*oh[49]+oh[50]+2*oh[51]+oh[52]+.5*	

	 oh[1])/5
	 o[52]<-(.5*oh[50]+oh[51]+2*oh[52]+oh[1]+.5*	

	 oh[2])/5
	 o
}

In the picture, an artefact can be seen, i.e. the decline in the 
incidence in the last week of the year. This drop is evident not 
only for the disease reporting dates but also for the disease onset 
dates. A possible explanation is that in the last week of the year, 
many people attempt self-treatment at home rather than going 
to see a doctor.

To illustrate variation in the flexibility of different models, a 
diagnosis was selected which shows considerable changes in the 
long-term trend, i.e. campylobacteriosis (A04.5) or salmonel-
losis (A02).

A linear trend will be integrated into the ANOVA model if the 
following equation is considered:

lm(log(inc)~yw+as.factor(w))

This model is shown in Figure 8. It is close to Serfling’s higher 
order model. However, the model obtained tends to overestima-
tion in its extremities and to underestimation in its central part.

Similarly to the model without cyclicity, both Serfling’s and 
ANOVA models can include a polynomial trend instead of the 
linear one, e.g. Serfling’s order 1 model will include an order 3 
polynomial trend as follows:

lm(log(inc)~yw+I(yw^2)+I(yw^3)+sin(yw)+cos(yw))

or for an ANOVA model:

lm(log(inc)~yw+I(yw^2)+I(yw^3)+as.factor(t))

Using a polynomial may result in shaping the data in a non-
realistic way, as each polynomial tends to stretch to infinity at 
its extremities.

The same effect can be achieved by dividing the trend into two 
components – a long-term trend and a cyclic trend:
•	 The long-term trend (linear, polynomial, or other) will be 

estimated;
•	 The estimated trend will be subtracted from the incidence. 

There are two possible ways for doing so:
Additive: the estimated trend will be subtracted from the in-
cidence and in further steps, this difference will be modelled;
Multiplicative: the incidence will be divided by the estimated 
trend and in further steps, this quotient will be modelled;

•	 The seasonal component will be estimated (using Serfling’s 
model or the ANOVA model);

•	 The seasonal and long-term components will be put together to 
obtain the required estimate of the expected (baseline) incidence.
Given the assumed log normal nature of the incidence, the 

multiplicative approach appears to be more appropriate while 
in the additive model, the normal nature of the incidence is sug-
gested. The assumed log-normal distribution and multiplicative 
model have the advantage of not allowing the prediction of 
negative values.

The ANOVA model extended with the multiplicative LOESS 
(local regression models) trend estimate is shown in Figure 9.

When a linear model is used and a normal incidence distri-
bution is assumed, Figure 11 is obtained. A serious problem is 
evident: the prediction can yield negative values.

To calculate the running mean, the length of the window needs 
to be established. To free the long-term trend from the annual perio-
dicity, the length of the window must be a multiple of one year, i.e. 
52 weeks, 104 weeks, and so on. The fact that the number of weeks 
in a year was adjusted to 52 appears to be relevant in this context. 
To provide a more general insight, a model with the estimation of 

Fig. 8. ANOVA model with a 
linear trend for the incidence 
of campylobacteriosis.
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Fig. 10. ANOVA model with 
an additive LOESS trend for 
the incidence of salmonellosis.

a long-term trend using a running mean is presented. A two-year 
window is used, but the LOESS estimate appears to be smoother 
and the model is closer to the data but at the expense of copying 
accidental influences, i.e. at the expense of lesser smoothness. The 
incidence was assumed again to have a log-normal distribution 
with a multiplicative long-term trend (Fig. 11).

Light smoothing or Serfling’s high order model provide a 
description close to the real situation but has a lower predictive 
power and is less suitable for the determination of the epidemic 
threshold (is more dependent on accidental fluctuation) and thus 
also for issuing an alert for an excessive incidence.

Fig. 11. ANOVA model with a 
multiplicative running mean 
(two-year window) trend for 
the incidence of salmonellosis.

Fig. 9. ANOVA model with a 
multiplicative LOESS trend for 
the incidence of salmonellosis.
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CONCLUSION

This article features different methods for modelling the in-
cidence of diseases but does not consider the effect of possible 
outliers (epidemics): this issue is beyond its scope and deserves 
separate attention. 

In practice, the simplest model is often applied where one 
constant is considered as the threshold on a long-term basis (Fig. 
1). This approach may not fit all diseases, as is the case with ILI 
whose incidence may differ between the summer and winter or 
with salmonellosis (Fig. 7) with typical seasonal fluctuations 
coupled with a long-term downward trend. A long-term trend 
may have even a more complicated shape. It also turns out that 
the integration of the polynomial is a worse approach than the 
running means of LOESS estimation since the polynomial tends 
to stretch to infinity at its extremities. Another consequence is 
that using the log-normal distribution is more suitable for model-
ling the incidence (the point is how many times it changes and 
not the size of the change) along with the multiplicative model. 
The ANOVA model seems to fit well and unlike the sine, to allow 
even for an asymmetrical period. This can be helpful e.g. in the 
context of ARI, characterized by a relatively high incidence in 
the winter, with a typical decline during the Christmas holiday 
due to unwillingness to go to see a doctor and to self-treatment 
attempts.

The main purpose of such modelling is to find a tool to pre-
dict the incidence and in particular, to identify the threshold, the 
exceedance of which indicates the excessive incidence and thus 
helps the epidemiologists, along with laboratory data, detect an 
epidemic.
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