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SUMMARY
In epidemiology, it is very important to estimate the baseline incidence of infectious diseases, but the available data are often subject to outliers 

due to epidemic outbreaks. Consequently, the estimate of the baseline incidence is biased and so is the predicted epidemic threshold which is 
a crucial reference indicator used to suspect and detect an epidemic outbreak. Another problem is that the “usual” incidence varies in a season 
dependent manner, i.e. it may not be constant throughout the year, is often periodic, and may also show a trend between years. To take account 
of these factors, more complicated models adjusted for outliers are used. If not adjusted for outliers, the baseline incidence estimate is biased. As 
a result, the epidemic threshold can be overestimated and thus can make the detection of an epidemic outbreak more difficult. Classical Serfling’s 
model is based on the sine function with a phase shift and amplitude. Multiple approaches are applied to model the long-term and seasonal trends. 
Nevertheless, none of them controls for the effect of epidemic outbreaks. The present article deals with the adjustment of the data biased by 
epidemic outbreaks. Some models adjusted for outliers, i.e. for the effect of epidemic outbreaks, are presented. A possible option is to remove the 
epidemic weeks from the analysis, but consequently, in some calendar weeks, data will only be available for a small number of years. Furthermore, 
the detection of an epidemic outbreak by experts (epidemiologists and microbiologists) will be compared with that in various models.
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INTRODUCTION

To illustrate the models proposed, the surveillance systems 
which are in place in the Czech Republic (CR) will be used. These 
are the EpiDat system for surveillance of other infectious diseases 
and the system of surveillance of acute respiratory infections 
(ARI) including influenza-like illness (ILI). The data pool avail-
able for this purpose includes ARI data since 1982, ILI data since 
2005, as well as the data on other infectious diseases reportable 
to the EpiDat system such as varicella (B01) from 1993 to 2014. 
The diseases listed as well as other diseases have been monitored 
in the Czech Republic much longer, but for data comparability, 
only the data from the period where both the above-mentioned 
surveillance systems were in place will be used. 

The aim of this paper is to describe methods for estimating the 
baseline and threshold incidence of a disease outside epidemics. 
Different diagnoses were used to illustrate this approach. The 
statistical and epidemiological methods and terminology used 
in this paper correspond to those indicated by Armitage (1) and 
Gail (2). The calculations were made using the R software (3).

RESULTS AND DISCUSSION

The aim is to estimate the baseline incidence depending on 
season (calendar week of disease onset) and long-term trend. This 
estimate is the basis for further epidemiological considerations, 
in particular for the prediction and determination of the epidemic 
threshold – the cut-off alerting to the epidemic occurrence of the 
disease monitored.

Let us assume that the incidence has a nearly log-normal dis-
tribution. An obstacle to estimating the incidence of a disease is 
the emergence of epidemics, i.e. of unexpected numbers of cases. 
This paper focuses on how to reduce the effect of these outliers, 
how to estimate the baseline (common) incidence which would 
cover the two types of trends. Different approaches to estimat-
ing the long-term trend and seasonal (annual) periodicity will be 
presented. A model attempting to reduce the effect of epidemics 
on the general incidence of a disease which can have both the 
seasonal and long-term trends will be considered. This modifica-
tion is based on the censored data methods suggested by Kaplan 
and Meier (4) which are used for survival analysis or analysis of 
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the data below the detection limit. To solve this problem, non-
parametric methods can be used, e.g. running median estimation 
or l-1 estimations of the regression median or regression quantiles 
(5). This approach does not require a prior assumption of the 
distribution shape, which may be an advantage, but if the type 
of distribution is known, this helpful information is sacrificed. 
Another approach consists in using models for longitudinal data 
analysis, ARMA or ARIMA models derived from Box and Jenkins 
(6). This approach provides estimates and predictions. It correlates 
the values found with those observed previously and therefore, 
the interpretation of this model is less illustrative. The suggested 
model has the advantage of separating the outliers (epidemic 
incidence) from other data. Using regression quantiles eliminates 
the effect of outliers, but without the identification of epidemic 
weeks. The ARMA or ARIMA models provide estimates of the 
incidence and cover the epidemic outbreaks, if any, but the aim of 
this paper is to estimate the expected incidence while controlling 
for such outbreaks. 

To construct a model, it is crucial to know when precisely the 
epidemic started. In principle, there are two possibilities:
1)	The epidemiologists are able to derive from other information 

(related to place or time of outbreak or laboratory results) when 
the epidemic begins.

2)	The epidemic can be also estimated based on excess cases – a 
large deviation from the model suggested. It is to be noted that 
what is classified as high incidence for ILI in summer can be 
as considered unusually low incidence in winter.
If the weeks where epidemic outbreaks occurred are known, 

the possibility of excluding these weeks from the analysis can 
be considered. Nevertheless, problems may arise from this step, 
e.g. the incidence will be difficult to assess in certain weeks as 
the relevant incidence data will only be available for a small 
number of years, the accuracy of the estimate will become worse 
and information on the incidence in these weeks, even if subject 
to inaccuracy, will be lost. At least the value obtained designates 
the upper limit for the common incidence.

As was already mentioned above, a log-normal distribution is 
assumed and should be reflected in the model. A similar assump-
tion was made by the authors (7), but without taking account of 
epidemics, and to construct the log incidence estimate, a log linear 
model, the lm() function of the R software, was used.

For a simpler situation with outliers where it is known that 
an epidemic outbreak occurred, the survreg() function from the 
survival library of the R software will be used. This solution is 
similar as in the work of Kyncl et al. (8).

First of all, the serial week is defined in accordance with 
the work of Procházka and Kynčl (7), i.e. week 1 of the year is 
always from 1 January to 7 January, week 2 from 8 January to 
14 January, and so on. Furthermore, inci is used to designate the 
incidence in week ywi (where ywi is the sum of week wi with the 
52-fold multiple of year yi, i.e. ywi = 52 . yi + wi), vector c contains 
the censoring information, i.e. ci = 1 if inci is the usual incidence 
(with no epidemic increase) and ci = 0 if the incidence in week 
wi is considered as excess incidence, it means that the cases are 
in excess of normal expectancy.

We can create the simplest model where the incidence is 
assumed to be constant throughout the year and epidemics are 
identified by experts (who determine whether ci = 0 or 1). The 
model can be expressed as follows:

survreg(Surv(inc,c,type="left")~1,dist="loggaussian")

We obtain two parameters of log Gaussian distribution (mean 
log incidences µ and its scale σ). 

From this model, Figure 1 is derived. The estimate of the 
epidemic threshold is constructed as a prediction interval (95%) 
for the incidence with a five percent error margin, i.e. with not 
more than five percent of all values falling above the model (and 
the model is constructed in such a way that it is not influenced by 
epidemics). The calculation is done as follows: for non-antilogged 
baseline estimate exp(μ), the upper 5% prediction interval is cal-
culated from α quantile of normal distribution uα and estimated 
standard deviation σ of log incidence, and the obtained limits are 
transformed as well as the average logs

exp (μ + uασ)

where μ is the estimated log incidence and σ is its standard 
deviation. In reality, more weeks can fall above this threshold due 
to possible epidemics, and namely this weeks with high incidence 
are suspected to be epidemic. From Figure 1, it can be clearly 
seen that such a threshold, the boundary of the grey zone, results 
in errors on both sides. Errors also arise from the fact that the 
incidence is a random quantity. The constructed threshold relies 
upon the historical incidence data and the expert’s opinion.

To identify an epidemic, it may be unsuitable to use a constant 
threshold, without taking account of the long-term trend and 
seasonality. The solid line in Figure 1 represents the baseline esti-
mated from the incidences after removing the influence of weeks 
designated by experts as epidemic. Points (daggers) represent the 
incidences (not considered as epidemic) while circles indicate 
the incidences in the weeks identified as epidemic by experts. 
The solid line is the estimated model (of the incidence outside 
epidemics) and the upper limit of the grey zone is the threshold 
derived from the baseline (the non-epidemic incidence should not 
fall above the threshold in more than in 5% of weeks).

The numerical values of the baseline incidence and values 
of the epidemic threshold for the constant model are indicated 
below the figure title. Other, more complicated models will be 
presented below.

To model the incidence of ILI, it was usually assumed that 
annually, 16% of the weeks are epidemic as inferred by epide-
miologists based on long-term experience. But this percentage 
varies with the diagnosis.

Let us consider the simplest model, assuming that the incidence 
does not vary in a time interval (year or season – the constant 
model). Let us suppose that 16% of the weeks are epidemic, try 
to find the weeks suspected to be epidemic, and display the weeks 
designated by experts in Fig. 2.  

If the epidemic weeks are not known, they can be sought 
iteratively:

Let us assume that over many years, the percentage of epidemic 
weeks of ILI is ∏. First of all, the above mentioned model will be 
calculated, and no epidemic outbreak will be assumed (therefore, 
ci = 1 for any i). For this model, an i is found for which the positive 
residual is the highest. For this i, let us switch to ci = 0. It means 
that if there were no epidemic outbreak in this week, the incidence 
would be lower than or equal to the value obtained. These steps 
are repeated until 100 ∏% of weeks with ci = 0 are achieved.
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The cut-off percentage of epidemic weeks varies with dis-
eases and should be derived from long-term experience. No 
unambiguous recommendation can be made and moreover, this 
cut-off value depends on the season. Despite these considera-
tions, a cut-off value needs to be determined for the purposes 
of this paper. A 16% censoring will be used for ARI and ILI 
and a 10% censoring will be assumed for other diseases such 
as mumps or hepatitis.

These steps can be considered for models of various complex-
ity. Some of them are presented below:

Let us compare the identification of epidemics derived from 
data (see the procedure above) with that assigned by experts. In 
Figure 2, dots are incidences, circles are incidences in weeks as-
sumed to be epidemic by experts or the model, and crosses are the 
remaining weeks. There are high-incidence weeks which were not 
considered as epidemic by experts (white circles), and conversely, 
there are low-incidence weeks e.g. with alarming laboratory char-
acteristics (grey circles), or there are weeks identically labelled as 
epidemic by both experts and the model (black circles). The solid 
line represents the estimated baseline where the effect of the16% 
of the highest values (identified as the highest, but not considered 
as epidemic by epidemiologists; therefore they correspond with 
the black and grey dots). Grey zones of different widths represent 
the periods labelled as epidemic by experts.

Figure 3 compares the two approaches from Figures 1 and 2, 
i.e. the epidemics identified by experts, by the model used or by 
both approaches (experts and model). One of the models does 
not take account of the information that an epidemic occurred 
(baseline – solid line and the epidemic threshold – dotted. In 
the other model, the solid line and dark grey zone were obtained 
by identifying the high-incidence weeks as indicated above and 
then by controlling for the effect (of the epidemics identified this 
way) on the estimate. Circles represent high incidence weeks 
and crosses other weeks. The baseline and threshold values 
represented in Figure 2 correspond to the estimates which are 
constructed to control for the effect of epidemics on the calculation 
of the estimate. The disagreement in the baseline and epidemic 
threshold values between Figures 1 and 2 results from the fact that 
the expert assumption may not fully correspond with the incidence 
data as can be seen from the circles in Figure 2 (disagreement 
is represented by grey and white circles). On the other hand, the 
disagreement between two estimates (censored and uncensored) 
in Figure 3 results from whether the effect of epidemics on the 
estimated baseline and epidemic threshold is considered or not 
(expert assumption is not considered). If this model is used to de-
tect epidemics, the censored estimate is a clearly superior option.

The fact that the disagreement between the model values e.g. 
in Figure 3 seems to be substantially smaller in comparison with 

Fig. 1. Model of the in-
cidence of ILI. A con-
stant model for the 
incidence as identified 
by experts.

Fig. 2. A constant 
model for the inci-
dence of ILI. Com-
parison of epidemics 
identified by experts 
and by the model.
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that between the thresholds is mainly due to the use of the log-
normal distribution which is more suitable for modelling the 
incidence. This difference is caused by using different models. 
The model using censored data is less sensitive to outliers (epi-
demic incidence), which is common to the log-normal distribu-
tion of incidences. 

To calculate the model that assumes the incidence of ILI is 
constant throughout the year, the following function was used:

survreg(Surv(inc,c,type="left")~1,dist="loggaussian")

where inc is the incidence, c indicates whether an epidemic 
occurred (c = 0) or not (c = 1) in the respective week (yw). 

In Figure 3, decline in the incidence can be seen, but the long-
term trend is not taken into consideration in the models used. 
This illusion is likely to result from the epidemics occurring 
primarily in 2005.

The vertical light grey lines in the figures are the beginnings 
of years.

Now, more complex models will be presented below. The 
constant model can be generalized by substituting the constant 
1 with a function, e.g. 

survreg(Surv(inc,c,type="left")~ . . . ,dist="loggaussian") 

where, similarly to the work of Procházka and Kynčl (7), any 
model can be imagined instead of . . . from the above mentioned 
simplest model (constant incidence) to periodicity models, 
Serfling’s model (9), or ANOVA model with differently estimated 
long-term trend.

To calculate Serfling’s first-order model (Fig. 4), the following 
function will be used:

survreg(Surv(inc,c,type="left")~yw+sin(2*pi*yw/52)
+cos(2*pi*yw/52),dist="loggaussian")

When this model is used, the week and year need to be identi-
fied (yw). The model is shown in Figure 4. The annual cyclicity 
of ILI is fully taken into account, but only a long-term linear 
trend is considered. 

In Figures 3 and 4, it is clearly visible that, unlike the cen-
sored model, the uncensored model is influenced by epidemics 
(outliers); therefore, it is more difficult to detect the excess 
incidence weeks as the threshold is higher. Moreover, Figure 4 
accounts for seasonal fluctuations and a possible linear trend. 

Fig. 4. Serfling's mod-
el of the incidence of 
ILI, censored (16%) 
and uncensored.

Fig. 3. The constant 
model for the inci-
dence of ILI. Epidemic 
weeks identified by 
the model, censored 
and uncensored.
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Nevertheless, it may not be realistic to assume linearity and that 
is why an attempt will be made to propose a model with a more 
complex trend. Another problem is that it may not be always 
appropriate to use the sine function which has a very smooth 
and symmetrical shape. To get closer to the data (to find the real 
shape of the model), Serfling’s higher order model or ANOVA 
model will be used:

A censored Serfling’s order 5 model is calculated using the 
following function:

survreg(Surv(inc,c,type="left")~yw
+sin(2*pi*yw/52)+cos(2*pi*yw/52)
+I(sin(2*2*pi*yw/52))+I(cos(2*2*pi*yw/52))
+I(sin(3*2*pi*yw/52))+I(cos(3*2*pi*yw/52))
+I(sin(4*2*pi*yw/52))+I(cos(4*2*pi*yw/52))
+I(sin(5*2*pi*yw/52))+I(cos(5*2*pi*yw/52)),dist="loggaussian")

An ANOVA model with a linear trend is calculated as follows:

survreg(Surv(inc,c,type="left")~yw
+as.factor(w),dist="loggaussian")

The results obtained in these models are very similar; that is 
why only the ANOVA model with a linear trend for the incidence 
of ILI is shown (Fig. 5).

These models are appropriate for use for the diseases where a 
linear or constant long-term trend can be expected, but with other 
diseases, a more complicated trend needs to be considered, e.g. as 
shown in the work of Procházka and Kynčl (7). In Figure 5, the 
difference between uncensored and censored models is shown. 
The uncensored threshold from a simpler model – the light grey 
zone only detects the excess incidence weeks with difficulty. The 
model for a linear trend for these data also allows higher incidence 
in the beginning than in the end. The censored model reduces, 
but does not fully rule out, the effect of high-incidence weeks on 
the constructed estimate.

In Figure 5, it appears that the linear trend (in particular in 
the uncensored model) is not able to reduce the effect of high-
incidence weeks in 2009–2011. To solve this problem, more 
complex models need to be used.

As shown in the work of Procházka and Kynčl (7), the data 
series can be decomposed into two components, one cyclic and the 
other, long-term trend. This step can be made by subtracting the 

Fig. 5.  Censored 
(16%) and uncen-
sored ANOVA sea-
sonality model with  
a linear trend.

Fig.  6.  Censored 
(16%) and uncen-
sored ANOVA model 
with LOESS for ILI.
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long-term trend from the data series or by dividing the data series 
by the long-term trend. Given that the lognormal distribution of the 
incidence is assumed, the multiplicative approach is more suitable 
(7). The multiplicative ANOVA model with the LOESS trend using 
the data from Figure 5 is shown in Figure 6. In comparison with 
the ANOVA model with the linear trend, Figure 6 shows higher 
estimated incidence in 2009–2011. The most marked difference 
appears in the end of the time series (in 2015).

The difference between the linear and ANOVA models for the 
incidence of ILI seems to be negligible. Other infectious diseases 
are addressed below.

The model of the incidence of mumps (B26) is shown in Figure 
7. From the figure, it is evident that significant epidemics occurred 
in 2005, 2010, and 2011 and are visible even in the uncensored 
model, but the epidemics in 1997, 1998, 2002, 2006, 2011, and 
2012 are only suspected by the censored model. The model also 
takes account of the long-term trend. Greater differences in high 
incidence weeks between the two models are due to the log scale.

In Figure 8 showing acute viral hepatitis A (B15), it can be seen 
that the long-term trend is estimated and hints that there is long-term 
cyclicity (ca 12 years), but the available data series is too short to 
prove it. Annual fluctuations are not found by the model, but they 
are insignificant and subject to accident as suggested by different 
shapes of the two models used (either with or without outliers).

Let us go back to Figure 2 that compares the simplest model 
with the constant trend, the identification of epidemics by experts, 
with the last model. One of the more complex models will be 
used that attempts to get as close as possible to the incidences 
outside the epidemic periods – ANOVA model with the LOESS 
trend shown in Figure 9. Figure 9 is constructed the same way as 
Figure 2, but uses a more complex model which allows a more 
realistic estimate of the epidemic threshold. From the calculated 
congruence percentages, it can be seen a slight improvement in 
congruence percentage between the identification of epidemics 
by experts and the model.

CONCLUSION

The most important point is the comparison of the models 
presented. Although based on different approaches, spanning 
from Serfling’s models based on sine and cosine functions and 
models smoothing the weekly average incidence, all models tend 
to yield very similar charts. The main contribution of this article 
is to introduce the methodology which reduces the impact of the 
outlying incidences (epidemics). In addition it demonstrates the 
difference between the models that either do or do not eliminate 
the effects of the epidemic (dark grey and light grey streaks in 

Fig. 7.  Censored 
(10%) and uncen-
s o r e d  A N O V A  
model with LOESS 
for mumps.

Fig. 8.  Censored 
(10%) and uncen-
sored ANOVA model 
with LOESS for he-
patitis A.
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Figures 3–8). In contrast, Figures 2 and 9 illustrate the agree-
ment between the models (ANOVA and constant model) and the 
identification of epidemics by experts. 
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