

COLORECTAL CANCER SCREENING TO IDENTIFY UNDIAGNOSED HEPATITIS C IN AN AUSTRIAN COHORT

Hannah Hofer¹, Sebastian Bachmayer², Hannah Oberthaler³, Georg Semmler⁴, Sarah Wernly², Sophie Genslückner⁵, Lea Maria Stangassinger³, Bernhard Wernly⁵, Ursula Huber-Schönauer⁶, Bernhard Paulweber⁵, Elmar Aigner⁵, Gertie Janneke Oostingh³, Christian Datz²

¹Department of Internal Medicine, Saint John of God Hospital, Teaching Hospital of the Paracelsus Medical Private University, Salzburg, Austria

²Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical Private University, Oberndorf, Austria

³Biomedical Sciences, Salzburg University of Applied Sciences, Salzburg, Austria

⁴Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria

⁵Clinic I for Internal Medicine, University Hospital Salzburg, Paracelsus Medical Private University, Salzburg, Austria

⁶Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical Private University, Salzburg, Austria

SUMMARY

Objectives: Hepatitis C virus (HCV) infection remains a significant public health concern despite the introduction of direct acting antiviral agents. To reach the World Health Organization (WHO) goal of eliminating viral hepatitis as a public health threat by 2030, adequate screening strategies and early diagnosis are crucial. This study aimed to determine the prevalence of HCV infection in an Austrian cohort and assess the feasibility of incorporating HCV screening into colorectal screening programmes.

Methods: The study enrolled 1,894 asymptomatic individuals during a colorectal screening programme with a mean age of 57 (± 7 years) years. Sera of the participants were screened for HCV-specific antibodies, and blood samples of individuals with detectable HCV-specific antibodies were tested by the polymerase chain reaction (PCR) to confirm a chronic HCV infection. Furthermore, we evaluated the characteristics of these individuals including their anthropometrics, biomarkers, and liver-specific information such as those obtained with a fibroscan.

Results: We found that 14 (0.74%) of the participants had detectable levels of HCV-specific antibodies, with 6 (0.32%) individuals being newly diagnosed with a chronic HCV infection. One of the 6 patients showed signs of liver cirrhosis. The newly diagnosed individuals included 4 cases of HCV genotype 1a and 2 cases of 1b.

Conclusion: Our study highlights the importance of screening for HCV infection in asymptomatic individuals, not only for those at risk of HCV exposure or with elevated liver enzymes. Incorporating HCV screening into colorectal screening programmes could be an effective strategy for increasing the rate of HCV diagnosis, thereby improving public health outcomes. Further investigation is needed regarding cost-effectiveness and strategies to reach individuals who have no access to screening programmes or do not adhere to regular preventive screenings.

Key words: chronic HCV infection, HCV screening, population-based screening, HCV, HCV genotype

Address for correspondence: C. Datz, Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical Private University, Paracelsusstraße 37, 5110 Oberndorf, Austria. E-mail: C.Datz@kh-oberndorf.at

<https://doi.org/10.21101/cejph.a8270>

INTRODUCTION

Hepatitis C virus (HCV) infection remains a major public health concern with approximately 72 million affected globally (1). Since the discovery of HCV in 1989, the virus continues to pose a significant challenge for public health, particularly in terms of its ability to cause chronic liver disease, increase the risk of liver cirrhosis, hepatocellular carcinoma and liver disease-related death. Individuals at increased risk for chronic HCV infection include those with a history of intravenous drug abuse, blood transfusions before 1992, prisoners, nosocomial infections, and men who have sex with men (2–5).

The World Health Organization (WHO) has set the ambitious goal to eliminate HCV infection by 2030, which includes reducing

the incidence of HCV infections by 90%, reducing HCV-associated mortality by 60% and treating 80% of people with chronic HCV-infections (6). The prevalence of HCV infection has declined in recent years with the introduction of direct-acting antiviral agents, although a vaccine for HCV remains elusive (7). However, current trends suggest we are unlikely to meet the WHO's elimination goals. This is supported by a modelling study analysing global changes in HCV prevalence between 2015 and 2020 (8).

The current global HCV diagnosis rate remains low, with an estimated 20% of all cases being detected (9). In the European Union (EU) and the United States (US), the diagnosis rate is slightly higher, at 36% and 50%, respectively (10). The US Preventive Services Task Force (USPTF) guidelines recommended screening for HCV infections in all adults (11). However, reaching all

adults remains difficult, and therefore incorporating HCV analysis into other screening programmes may be a pragmatic solution.

One potential strategy is to determine HCV infection during a colorectal screening programme (12). Colorectal cancer is a common and potentially preventable disease, with screening programmes available in many developed countries (13), although their systematic implementation varies even across Europe. In Austria, only a few federal states currently offer organized colorectal screening programmes, and there is a lack of comprehensive data on the utilization rates in the general population (14). Efforts should be made to expand these programmes nationwide in the future. By incorporating HCV screening into these programmes, it may be possible to increase the rate of HCV diagnosis and ultimately improve public health outcomes.

The aim of this study was to gather data on the overall prevalence of HCV infection in two Austrian cohorts of asymptomatic individuals and to assess the feasibility of incorporating HCV screening into a colorectal screening programme. Furthermore, it was determined how many patients newly diagnosed with HCV would have been further assessed after common liver screening using a fibrosis index based on four factors (Fib-4) and an aspartate aminotransferase-to-platelet ratio index (APRI).

MATERIALS AND METHODS

As part of the colorectal carcinoma (CRC) screening programme (SAKKOPI) and the health screening programme (SAPHIR) in the cities of Oberndorf and Salzburg, Austria, 1,894 asymptomatic individuals were examined for hepatitis C virus infection (SAKKOPI n=906 and SAPHIR n=988) between January 2007 and March 2020. Patients were selected for screening through colonoscopy according to their age. The study and all procedures were performed according to the principles of the Declaration of Helsinki. The local Ethics Committee for the Province of Salzburg approved the study protocol (approval no. 415-E/1262). Written informed consent was obtained from every participant.

To screen for liver disease, the individuals underwent medical history evaluations, liver enzyme tests were performed, and a subset of the participants (n=1,179) also underwent transient elastography evaluating liver stiffness analysed in kPa performed by specialists in internal medicine. Blood was collected at the participating hospitals, including the General Hospital in Oberndorf and the University Hospital Salzburg. Liver enzymes including bilirubin, gamma-glutamyl transferase (gGT), aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (AP) were analysed.

Fib-4 and APRI scores were calculated. Fib-4 is a non-invasive score to estimate liver scarring in HCV and HBV patients to assess need for biopsy (15). APRI represents the AST to platelet ratio index determining the likelihood of hepatic fibrosis in patients with a chronic HCV-infection (16).

Serum samples were collected using a standard blood drawing system, centrifuged after a coagulation time of 30 minutes and stored at -80°C . The presence of HCV-specific IgG antibodies was determined using enhanced chemiluminescence-immunoassay technology (CLIA) with the Vitros Anti-HCV MicroWell test (Ortho Clinical Diagnostics/Grifols, Bridgend, UK) on the VITROSTM ECiQ Immunodiagnostic System (Ortho

Clinical Diagnostics, Bridgend, UK). Patients who tested positive for HCV-specific IgG were further evaluated for HCV RNA and genotype. The amplified PCR products were subjected to real-time PCR using HCV genotype-specific probes and analysed using a real-time PCR instrument. The genotyping results were analysed and compared with the HCV genotyping database to determine the HCV genotype(s) present in the patient samples.

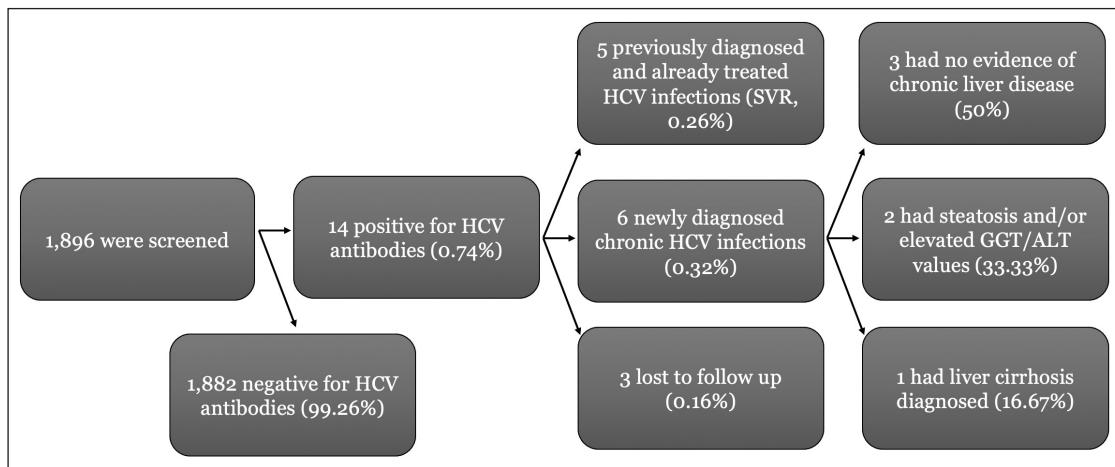
Stata 18 was employed for the entirety of our statistical analyses. For continuous variables, we presented the data as either mean and standard deviation (SD) for those following a normal distribution, or as mean and interquartile range (IQR) for those not normally distributed. The normality of distribution for these variables was rigorously assessed using the Kolmogorov-Smirnov test. We also analysed categorical data. For this purpose, the chi-square test was utilized to compare frequencies and assess associations between different categorical variables.

All other data, including anthropometrics, biomarkers, and liver-specific information, were acquired as described previously (17, 18).

RESULTS

Total Cohort

The study included 1,894 participants with a mean age of 57 years (± 7 years). A total of 935 (49%) of subjects were males and 955 (51%) were females; 598 (31%) of the patients showed signs of a metabolic syndrome according to current diagnostic criteria (19). The mean Fib-4 score was 1.07 (± 0.58), mean platelet count was 247 (G/L) (± 56), and mean liver stiffness measured by transient elastography was 5 kPa (± 3) (Table 1).


Patients with Positive HCV Antibodies

Out of the above-described participants, 14 (0.74%) individuals had detectable levels of HCV-specific antibodies. Five had

Table 1. Characteristics of the total cohort (N=1,894)

Sex, n (%)	
Male	935 (49)
Female	955 (51)
Age (years), mean (SD)	57 (7)
BMI, mean (SD)	27 (5)
Metabolic syndrome, n (%)	598 (31)
Bilirubine (mg/dL), mean (SD)	0.9 (0.6)
gGT (U/L), mean (SD)	34 (40)
AP (U/L), mean (SD)	65 (19)
AST (U/L), mean (SD)	23 (10)
ALT (U/L), mean (SD)	25 (16)
Platelets (G/L), mean (SD)	247 (56)
Fib-4, mean (SD)	1.07 (0.58)
LSM (kPa), mean (SD)	5 (3)

SD – standard deviation; gGT – gamma-glutamyl transferase; AP – alkaline phosphatase; AST – aspartate transaminase; ALT – alanine transaminase; LSM – liver stiffness measurement

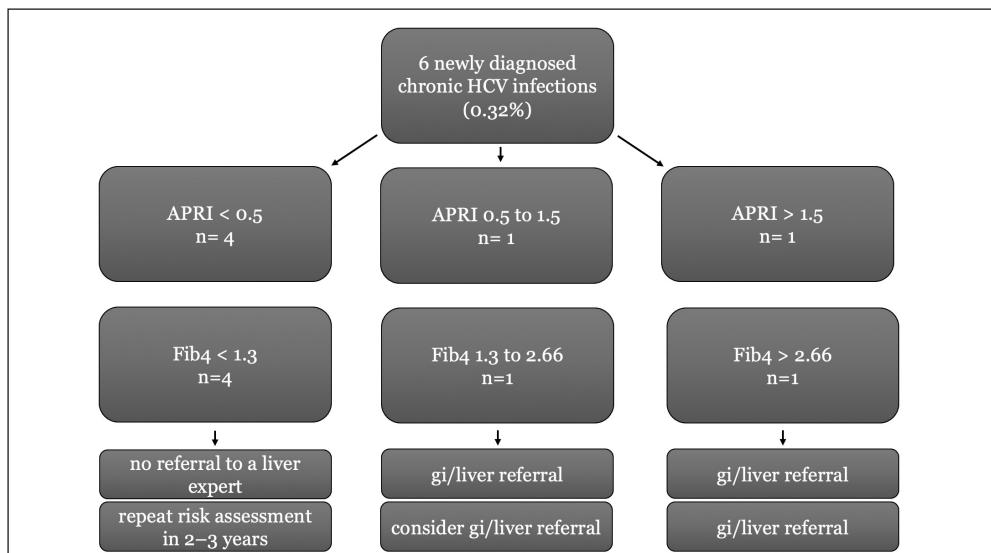
Fig. 1. Flowchart.

Source: own presentation

previously been diagnosed and successfully treated, while three were lost to follow-up (Fig. 1). Reflex testing of HCV RNA in anti-HCV positive individuals would have prevented the loss to follow-up of three patients.

The remaining 6 (0.32%) individuals were newly diagnosed with chronic HCV infection. Out of these 14 individuals, six patients had a Fib-4 below 1.3, seven patients had a Fib-4 \geq 1.3 and $<$ 2.67, and one patient displayed a Fib-4 \geq 2.67, indicating advanced liver fibrosis/cirrhosis (Fig. 2). One individual (7.1%) was infected after blood plasma donation. The suspected route of transmission for three patients (17.6%) were red blood cell transfusions, and for ten individuals (71.4%) it is unknown.

HCV-positive patients and the total cohort ($p=0.17$). Two individuals were infected after RBC transfusions, one patient became infected after blood plasma donation and for the remaining three individuals the route of transmission remains unknown.


Transient elastography was performed for all newly diagnosed viraemic HCV patients: the mean liver stiffness measured was 4.7 kPa (± 1.62) and mean CAP score in dB/m was 270.5 (± 47.25). Only the patient with liver cirrhosis (28 kPa) showed a liver stiffness measurement above 8 kPa. The genotype distribution among these newly diagnosed individuals showed four cases of HCV-genotype 1a and two cases of 1b. Further characteristics of the newly diagnosed viraemic patients are shown in Table 2.

Newly Diagnosed Viraemic HCV Patients

Of note, of the six newly diagnosed HCV-positive patients with a mean age of 60 (± 4.75), one had liver cirrhosis (Fib-4 $>$ 2.67, APRI $>$ 1.5), one had a Fib-4 between 1.3 and 2.67, and an APRI between 0.5 and 1.5, and three had both an APRI $<$ 0.5 as well as Fib-4 $<$ 1.3. The mean Fib-4 score was 1.2 (± 0.64), we observed no statistically significant difference in Fib-4 between

DISCUSSION

We found that fourteen of the participants had detectable levels of HCV-specific antibodies, with six individuals being newly diagnosed with a chronic HCV infection. The mean age and gender distribution of the newly diagnosed individuals suggests that HCV infection is affecting a wide range of the population,

Fig. 2. Further testing according to Fib-4 and APRI (16).

Source: own presentation

Table 2. Characteristics of the newly diagnosed viraemic patients

Suspected route of transmission	Patient 1	Patient 2	Patient 3	Patient 4	Patient 5	Patient 6
	RBC transfusion	Blood plasma donation	RBC transfusion	Unclear	Unclear	Unclear
Genotype	1b	1a	1a	1a	1b	1a
Age (years)	58	64	58	62	63	49
Sex	Female	Male	Female	Male	Female	Female
BMI	27	23	21	28	NA	23
Fib-4	0.83	7.8	1.66	1.26	1.2	0.61
Bilirubin (mg/dL)	1.3	1.8	0.9	0.9	0.6	0.6
gGT (U/L)	23	356	25	23	17	14
AST (U/L)	45	89	30	24	24	14
ALT (U/L)	73	58	27	20	24	18
AP (U/L)	65	295	59	45	94	65
LSM (kPa)	4.8	27.7	3.7	4.6	3.7	5.8
Platelets (G/L)	367	96	200	264	256	267
CAP (dB/m)	306	217	254	287	351	220
Fib-4	0.83	7.79	1.67	1.26	1.21	0.61

BMI – body mass index; gGT – gamma-glutamyl transferase; AST – aspartate transaminase; ALT – alanine transaminase; AP – alkaline phosphatase; LSM – liver stiffness measurement; CAP – controlled attenuation parameter; Fib-4 – fibrosis index based on four factors

and some individuals may still go undiagnosed. Direct-acting antiviral agents' treatment is effective and associated with the minimization of de novo HCV-related hepatocellular carcinoma and liver related mortality (20).

The high prevalence of steatosis among these individuals and the fact that one asymptomatic patient was diagnosed with liver cirrhosis highlights the importance of screening for liver disease in HCV-infected individuals. Four of the six newly diagnosed patients had an APRI < 0.5, and they would not undergo screening for liver disease based on the recently proposed Structured Early detection of Asymptomatic Liver Cirrhosis (SEAL) algorithm (21). This emphasizes the need for further examination of screening approaches in asymptomatic individuals, as certain chronic HCV-infections could evade diagnosis by non-invasive diagnosis scores. We observed no statistically significant difference in Fib-4 between HCV-positive patients and the total cohort. This lack of statistical significance is likely attributable to the limited sample size inherent to our real-life clinical data.

The distribution of HCV-genotypes in this study was slightly different from previous reports. In previous Austrian population studies, genotype 1b was more common than genotype 1a. In contrast, in this study among newly diagnosed individuals, HCV genotype 1a was found in four out of six individuals (66.7%) and 1b was found in two out of six individuals (33.3%). This might be due to social changes including intense touristic activities, war and immigration (22, 23). One newly diagnosed patient, now 66 years old, likely acquired the virus through plasma cell donation in Salzburg, where infections occurred due to poor hygiene and safety measures during the 1970s and 1980s (24–26).

In the United States a systematic screening for all individuals aged 18–79 years at least once in a lifetime is recommended (11). In Germany, the opportunity for a one-time screening for hepatitis B and C is established for all individuals above the age of 35, and pregnant women are also screened at the beginning of prenatal

care (primarily as a surrogate group for population screening) (27). To achieve the WHO goal of 90% diagnosed individuals by 2030, a population-based screening was found to be cost-effective in France (28). Austria, as a central European country, is likely to be comparable to France in this regard. However, there is currently a lack of public screening strategies for chronic HCV infection in Austria. Recommended screening strategies for colorectal carcinoma in Austria are already established: individuals aged 45–75 should have the opportunity to undergo colorectal cancer screening every ten years through colonoscopy or every two years through a faecal occult blood test (29). Unfortunately, the participation rates in CRC screening are not comprehensively documented in Austria. The general screening utilization varies widely across Europe, ranging from 6.3% to 75.4% depending on the type of screening programme offered (30).

The strength of our study includes the detailed characterization of the cohort, as there is no comparable population-based data set available for Austria.

CONCLUSION

Incorporating a one-time screening for HCV into pre-existing colorectal cancer screening programmes could be beneficial. However, the effectiveness of such integration may be limited by low participation rates and the fact that healthier individuals, who are more likely to participate in screenings, may not represent the highest risk groups for HCV. Further studies are necessary to assess the practicality and cost-effectiveness of integrating HCV screening into CRC screening programmes and to develop strategies that reach underserved populations. By analysing these factors in a broader context, we can better understand the potential impact of such integrated programmes and work towards improving HCV diagnosis and treatment outcomes.

Acknowledgements

We would like to express our appreciation to Lea Rosenstatter and Karin Schwnoha for their collaboration, input and assistance in various aspects of this research.

Conflicts of Interest

None declared

Funding

This research received financial support from Gilead, Thermo Fisher, and Spar. It is important to note that, while these organizations provided the necessary funding, they had no role in the study design, data collection, analysis, interpretation of data, writing of the report, or the decision to submit the paper for publication. The findings and conclusions of this study are solely the responsibility of the authors and do not necessarily represent the official views of the funding organizations.

Authors' Contributions

All authors contributed substantially to this manuscript. HH and SB contributed equally to this work.

REFERENCES

1. Polaris Observatory HCV Collaborators. Global prevalence and genotype distribution of hepatitis C virus infection in 2015: a modelling study. *Lancet Gastroenterol Hepatol.* 2017 Mar;2(3):161-76.
2. Solomon SS, Mehta SH, Srikrishnan AK, Solomon S, McFall AM, Laeyendecker O, et al. Burden of hepatitis C virus disease and access to hepatitis C virus services in people who inject drugs in India: a cross-sectional study. *Lancet Infect Dis.* 2015 Jan;15(1):36-45.
3. Jordan AE, Perlman DC, Neurer J, Smith DJ, Des Jarlais DC, Hagan H. Prevalence of hepatitis C virus infection among HIV+ men who have sex with men: a systematic review and meta-analysis. *Int J STD AIDS.* 2017 Feb;28(2):145-59.
4. Spearman CW, Dusheiko GM, Hellard M, Sonderup M. Hepatitis C. *Lancet.* 2019 Oct 19;394(10207):1451-66.
5. Herold G. [Internal Medicine 2023]. Berlin: De Gruyter Brill; 2023. German.
6. World Health Organization. Global health sector strategy on viral hepatitis 2016-2021: towards ending viral hepatitis [Internet]. Geneva: WHO; 2016 [cited 2025 Apr 14]. Available from: <https://apps.who.int/iris/bitstream/handle/10665/246177/who?sequence=1>.
7. European Association for the Study of the Liver. EASL recommendations on treatment of hepatitis C 2016. *J Hepatol.* 2017 Jan;66(1):153-94.
8. Polaris Observatory HCV Collaborators. Global change in hepatitis C virus prevalence and cascade of care between 2015 and 2020: a modelling study. *Lancet Gastroenterol Hepatol.* 2022 May;7(5):396-415.
9. Messina JP, Humphreys I, Flaxman A, Brown A, Cooke GS, Pybus OG, et al. Global distribution and prevalence of hepatitis C virus genotypes. *Hepatology.* 2015 Jan;61(1):77-87.
10. Liu CH, Kao JH. Acute hepatitis C virus infection: clinical update and remaining challenges. *Clin Mol Hepatol.* 2023 Jul;29(3):623-42.
11. US Preventive Services Task Force; Owens DK, Davidson KW, Krist AH, Barry MJ, Cabana M, Caughey AB, et al. Screening for hepatitis C virus infection in adolescents and adults: US Preventive Services Task Force Recommendation Statement. *JAMA.* 2020 Mar 10;323(10):970-5.
12. Sears DM, Cohen DC, Ackerman K, Ma JE, Song J. Birth cohort screening for chronic hepatitis during colonoscopy appointments. *Am J Gastroenterol.* 2013 Jun;108(6):981-9.
13. US Preventive Services Task Force; Davidson KW, Barry MJ, Mangione CM, Cabana M, Caughey AB, Davis EM, et al. Screening for colorectal cancer: US Preventive Services Task Force Recommendation Statement. *JAMA.* 2021 May 18;325(19):1965-77.
14. Gsur A, Baierl A, Brezina S. Colorectal Cancer Study of Austria (CORS): a population-based multicenter study. *Biology (Basel).* 2021 Jul 28;10(8):722. doi: 10.3390/biology10080722.
15. Sterling RK, Lissen E, Clumeck N, Sola R, Correa MC, Montaner J, et al.; APRICOT Clinical Investigators. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. *Hepatology.* 2006 Jun;43(6):1317-25.
16. Lackner C, Struber G, Liegl B, Leibl S, Ofner P, Bankuti C, et al. Comparison and validation of simple noninvasive tests for prediction of fibrosis in chronic hepatitis C. *Hepatology.* 2005 Jun;41(6):1376-82.
17. Wernly S, Semmler G, Schaffler-Schaden D, Flamm M, Aigner E, Datz C, et al. The association between educational status and colorectal neoplasia: results from a screening cohort. *Int J Colorectal Dis.* 2023 Apr 5;38(1):91. doi: 10.1007/s00384-023-04383-z.
18. Wernly S, Semmler G, Völkerer A, Flamm M, Aigner E, Niederseer D, et al. Helicobacter pylori and cardiovascular risk: only a dead Helicobacter is a good Helicobacter? *Helicobacter.* 2022 Dec;27(6):e12928. doi: 10.1111/hel.12928.
19. Kassi E, Pervanidou P, Kaltsas G, Chrousos G. Metabolic syndrome: definitions and controversies. *BMC Med.* 2011 May 5;9:48. doi: 10.1186/1741-7015-9-48.
20. Semmler G, Meyer EL, Kozbial K, Schwabl P, Hametner-Schreil S, Zanetto A, et al. HCC risk stratification after cure of hepatitis C in patients with compensated advanced chronic liver disease. *J Hepatol.* 2022 Apr;76(4):812-21.
21. Labenz C, Arslanow A, Nguyen-Tat M, Nagel M, Wörns MA, Reichert MC, et al. Structured early detection of asymptomatic liver cirrhosis: results of the population-based liver screening program SEAL. *J Hepatol.* 2022 Sep;77(3):695-701.
22. Strauss R, Fülop G, Pfeifer C. Hepatitis C in Austria 1993-2000: reporting bias distort HCV epidemiology in Austria. *Euro Surveill.* 2003 May;8(5):113-8.
23. Maier A, Metz-Gercek S, Hackl F, Luger C, Ziachehabi A, Strauss R, et al. Chronic hepatitis C in Austria, 1992-2006: genotype distribution and demographic factors. *Euro Surveill.* 2010 Feb 25;15(8):19492. doi: 10.2807/ese.15.08.19492-en.
24. Ferenci P, Ferenci S, Datz C, Rezman I, Oberaigner W, Strauss R. Morbidity and mortality in paid Austrian plasma donors infected with hepatitis C at plasma donation in the 1970s. *J Hepatol.* 2007 Jul;47(1):31-6.
25. Datz C, Cramp M, Haas T, Dietze O, Nitschko H, Froesner G, et al. The natural course of hepatitis C virus infection 18 years after an epidemic outbreak of non-A, non-B hepatitis in a plasmapheresis centre. *Gut.* 1999 Apr;44(4):563-7.
26. Muss N, Frösner GG, Sandhofer F. Epidemic outbreak of non-A, non-B hepatitis in a plasmapheresis center. I: Epidemiological observations. *Infection.* 1985 Mar-Apr;13(2):57-60.
27. Sarrazin C, Boesecke C, Golsabahi-Brocawski S, Moog G, Negro F, Silaidos C, et al. Hepatitis C virus: current steps toward elimination in Germany and barriers to reaching the 2030 goal. *Health Sci Rep.* 2021 Jun 4;4(2):e290. doi: 10.1002/hsr.2290.
28. Deuffic-Burban S, Huneau A, Verleene A, Brouard C, Pillonel J, Le Strat Y, et al. Assessing the cost-effectiveness of hepatitis C screening strategies in France. *J Hepatol.* 2018 Oct;69(4):785-92.
29. Gartlehner G, Schernhammer E, Lax SF, Preusser M, Bachler H, Titzer H, et al. Screening for colorectal cancer: a recommendation statement of the Austrian National Committee for Cancer Screening. *Wien Klin Wochenschr.* 2023 Sep;135(17-18):447-55.
30. Ola I, Cardoso R, Hoffmeister M, Brenner H. Utilization of colorectal cancer screening tests across European countries: a cross-sectional analysis of the European health interview survey 2018-2020. *Lancet Reg Health Eur.* 2024 Apr 29;41:100920. doi: 10.1016/j.lanepe.2024.100920.

Received May 2, 2024

Accepted in revised form April 14, 2025