Cent Eur J Public Health 2011, 19(3):158-164 | DOI: 10.21101/cejph.a3667

Geographic Accumulation of Creutzfeldt-Jakob Disease in Slovakia - Environmental Metal Imbalance as a Possible Cofactor

Dana Slivarichová1, Eva Mitrová1, Monika Ursínyová2, Iveta Uhnáková2, Silvia Koščová1, Ladislava Wsólová3
1 Department of Prion Diseases, Slovak Medical University, Bratislava, Slovak Republic
2 Laboratory of Toxic and Essential Elements, Slovak Medical University, Bratislava, Slovak Republic
3 Department of Biostatistical Analysis, Slovak Medical University, Bratislava, Slovak Republic

Slovakia is characterised by an unusually high number of patients affected by genetic Creutzfeldt-Jakob disease (CJD) with E200K mutation at the PRNP gene. Penetrance of the mutation is incomplete (59%). Therefore, for the onset of the clinical manifestation, an influence of other endo- or exogenous factors could not be excluded. Experimental data suggest that copper and manganese levels may play an important role in the pathogenesis of prion diseases. The highest number of Slovak genetic CJD patients originates from Orava - the northern region of central Slovakia. Manganese is a dominant pollutant in Orava. The objective of this study was to clarify a possible exogenous influence of environmental Mn/Cu imbalance on the CJD clustering. Mn and Cu levels were analysed in the brain tissue of genetic CJD cases (from Orava and from control regions of Slovakia), as well as of sporadic CJD patients and controls. Analyses demonstrate i) significantly higher Mn level in focally accumulated, "clustering" genetic CJD cases in comparison to all other groups, ii) Cu status differences between compared groups were without statistical sig-nificance; decreased concentrations were found in genetic cases from extrafocal genetic CJD areas, iii) Mn/Cu ratios were increased in all CJD groups in comparison to controls. Metal ratios in clustering gCJD cases were significantly higher in comparison to sporadic cases and also to controls, but not to the extrafocal genetic CJD subgroup. These results indicate that more important than increasing Mn level in pathogenesis of CJD appears to be the role of the Mn/Cu imbalance in the CNS. The imbalance observed in the cluster of genetic CJD cases is probably a result of both: the excessive environmental Mn level and the disturbance of Mn/Cu ratios in the Orava region. Presented findings indicate an environmental Mn/Cu imbalance as a possible exogenous CJD risk co-factor which may, in coincidence with endogenous (genetic) CJD risk, contribute to the focal accumulation (cluster) of genetic CJD in Slovakia.

Keywords: manganese, copper, metal imbalance, Creutzfeldt-Jakob disease, cluster

Received: January 31, 2011; Revised: May 19, 2011; Accepted: May 19, 2011; Published: September 1, 2011  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Slivarichová D, Mitrová E, Ursínyová M, Uhnáková I, Koščová S, Wsólová L. Geographic Accumulation of Creutzfeldt-Jakob Disease in Slovakia - Environmental Metal Imbalance as a Possible Cofactor. Cent Eur J Public Health. 2011;19(3):158-164. doi: 10.21101/cejph.a3667. PubMed PMID: 22026293.
Download citation

References

  1. Büeler H, Fischer M, Lang Y, Bluethmann H, Lipp HP, DeArmond SJ, et al. Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature. 1992 Apr 16;356(6370):577-82. Go to original source... Go to PubMed...
  2. Prusiner SB, Bolton DC, Groth DF, Bowman KA, Cochran SP, McKinley MP. Further purification and characterization of scrapie prions. Biochemistry. 1982 Dec 21;21(26):6942-50. Go to original source...
  3. Prusiner SB, McKinley MP, Bolton DC et al. Prions: methods for assay, purification and characterization. In: Maramorosch K, Koprowski H, editors. Methods in virology. New York:Academic press; 1984. p. 293-345. Go to original source...
  4. Prusiner SB. Molecular biology of prion diseases. Science. 1991 Jun 14;252(5012):1515-22. Go to original source...
  5. Brown DR, Schmidt B, Groschup MH, Kretzschmar HA. Prion protein expression in muscle cells and toxicity of a prion protein fragment. Eur J Cell Biol. 1998 Jan;75(1):29-37. Go to original source... Go to PubMed...
  6. Guentchev M, Voigtländer T, Haberler C, Groschup MH, Budka H. Evidence for oxidative stress in experimental prion disease. Neurobiol Dis. 2000 Aug;7(4):270-3. Go to original source... Go to PubMed...
  7. Brown DR, Qin K, Herms JW, Madlung A, Manson J, Strome R, et al. The cellular prion protein binds copper in vivo. Nature. 1997 Dec 1825;390(6661):684-7. Go to original source... Go to PubMed...
  8. Brown DR, Wong BS, Hafiz F, Clive C, Haswell SJ, Jones IM. Normal prion protein has an activity like that of superoxide dismutase. Biochem J. 1999 Nov 15;344 Pt 1:1-5. Erratum in: Biochem J. 2000 Feb 1;345 Pt 3:767. Go to original source...
  9. Brown DR, Hafiz F, Glasssmith LL, Wong BS, Jones IM, Clive C, et al. Consequences of manganese replacement of copper for prion protein function and proteinase resistance. EMBO J. 2000 Mar 15;19(6):1180-6. Go to original source... Go to PubMed...
  10. Wong BS, Wang H, Brown DR, Jones IM. Selective oxidation of methionine residues in prion proteins. Biochem Biophys Res Commun. 1999 Jun 7;259(2):352-5. Go to original source... Go to PubMed...
  11. Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, et al. Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10962-6. Go to original source... Go to PubMed...
  12. Stahl N, Baldwin MA, Teplow DB, Hood L, Gibson BW, Burlingame AL, et al. Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing. Biochemistry. 1993 Mar 2;32(8):1991-2002. Go to original source...
  13. Giese A, Levin J, Bertsch U, Kretzschmar H. Effect of metal ions on de novo aggregation of full-length prion protein. Biochem Biophys Res Commun. 2004 Aug 6;320(4):1240-6. Go to original source... Go to PubMed...
  14. Tsenkova RN, Iordanova IK, Toyoda K, Brown DR. Prion protein fate governed by metal binding. Biochem Biophys Res Commun. 2004 Dec 17;325(3):1005-12. Go to original source... Go to PubMed...
  15. Mitrová E, Belay G. Creutzfeldt-Jakob disease with E200K mutation in Slovakia: characterization and development.Acta Virol. 2002;46(1):31-9.
  16. BüchlA, Hawkesworth CJ, Ragnarsdottir KV, Brown DR. Re-partitioning of Cu and Zn isotopes by modified protein expression. Geochem Trans. 2008 Oct 10;9:11. Go to original source... Go to PubMed...
  17. Brazier MW, Volitakis I, Kvasnicka M, WhiteAR, Underwood JR, Green JE, et al. Manganese chelation therapy extends survival in a mouse model of M1000 prion disease. J Neurochem. 2010 Jul;114(2):440-51. Go to original source... Go to PubMed...
  18. Thackray AM, Knight R, Haswell SJ, Bujdoso R, Brown DR. Metal imbalance and compromised antioxidant function are early changes in prion disease. Biochem J. 2002 Feb 15;362(Pt 1):253-8. Go to original source... Go to PubMed...
  19. Barceloux DG. Manganese. J Toxicol Clin Toxicol. 1999;37(2):293-307. Go to original source... Go to PubMed...
  20. MarkesberyWR, EhmannWD, HossainTI,Alauddin M. Brain manganese concentrations in human aging andAlzheimer's disease. Neurotoxicology. 1984;5(1):49-57. Go to original source...
  21. Tanaka S, Lieben J. Manganese poisoning and exposure in Pennsylvania. Arch Environ Health. 1969 Nov;19(5):674-84. Go to original source...
  22. Mitrová E. Some new aspects of CJD epidemiology in Slovakia. Eur J Epidemiol. 1991 Sep;7(5):439-49. Go to original source...
  23. Wong BS, Chen SG, Colucci M, Xie Z, Pan T, Liu T, et al. Aberrant metal binding by prion protein in human prion disease. J Neurochem. 2001 Sep;78(6):1400-8. Go to original source... Go to PubMed...
  24. Ursinyova M, Vanova R, Palusova O. Monitoring of dust deposition and its components in ambient air in Slovakia. AHEM. 1992;(2):1-21. (In Slovak.)
  25. Pukancikova K. Air pollution in the Slovak Republic 2003. Bratislava: Ministry of Environment of the Slovak Republic, Slovak Hydrometeorological Institute; 2004. (In Slovak.)
  26. Purdey M. Ecosystems supporting clusters of sporadic TSEs demonstrate excesses of the radical-generating divalent cation manganese and deficiencies of antioxidant co factors Cu, Se, Fe, Zn. Does a foreign cation substitution at prion protein's Cu domain initiate TSE? Med Hypotheses. 2000 Feb;54(2):278-306. Go to original source... Go to PubMed...
  27. Ranostajova K. Analyses of metal levels in hair of children in Dolny Kubin and Oravska Lesna, 1983/1987/1995. Dolný Kubín: SZU Dolný Kubín; 1995 (In Slovak.)
  28. Masánová V, Mitrova E, Ursinyova M, Uhnakova I, Slivarichova D. Manganese and copper imbalance in the food chain constituents in relation to Creutzfeldt-Jakob disease. Int J Environ Health Res. 2007 Dec;17(6):419-28. Go to original source... Go to PubMed...
  29. Barbeau A. Manganese and extrapyramidal disorders (a critical review and tribute to Dr. George C. Cotzias). Neurotoxicology. 1984;5(1):13-35.
  30. Bastian F. CJD and other transmissible spongiform encephalopathies. St Louis: Mosby Year Book; 1991.
  31. Banta RG, Markesbery WR. Elevated manganese levels associated with dementia and extrapyramidal signs. Neurology. 1977 Mar;27(3):213-6. Go to original source... Go to PubMed...
  32. Abdel-Naby S, Hassanein M. Neuropsychiatric manifestations of chronic manganese poisoning. J Neurol Neurosurg Psychiatry. 1965 Jun;28:282-8. Go to original source...
  33. Aschner M, Aschner JL. Manganese neurotoxicity: cellular effects and blood-brain barrier transport. Neurosci Biobehav Rev. 1991;15(3):333-40. Go to original source...
  34. Mitrová E. Analytical epidemiology and risk factors of CJD. In: Court LA, Dormont D, Kingsbury DT, editors. Uncoventional virus diseases of the central nervous system. Paris: Masson; 1986. p. 19-28.
  35. Oberdoester G, Cherian G. Manganese. In: Biological monitoring of toxic metals. New York: Plenum; 1988. p. 283-301. Go to original source...
  36. Heilig E, Molina R, Donaghey T, Brain JD, Wessling-Resnick M. Pharmacokinetics of pulmonary manganese absorption: evidence for increased susceptibility to manganese loading in iron-deficient rats. Am J Physiol Lung Cell Mol Physiol. 2005 May;288(5):L887-93. Go to original source... Go to PubMed...
  37. Legleiter LR, Liu HC, Lloyd KE, Hansen SL, Fry RS, Spears JW. Exposure to low dietary copper or low copper coupled with high dietary manganese for one year does not alter brain prion protein characteristics in the mature cow. J Anim Sci. 2007 Nov;85(11):2895-903. Go to original source... Go to PubMed...
  38. Hesketh S, Sassoon J, Knight R, Brown DR. Elevated manganese levels in blood and CNS in human prion disease. Mol Cell Neurosci. 2008 Mar;37(3):590-8. Go to original source... Go to PubMed...