Cent Eur J Public Health 2018, 26(3):177-182 | DOI: 10.21101/cejph.a5222
Respiratory toxicity of TiO2 nanoparticles after intravenous instillation: an experimental study
- 1 Laboratory of Respiratory Toxicology, Faculty of Public Health, Slovak Medical University, Bratislava, Slovak Republic
- 2 Medical Faculty, Slovak Medical University, Bratislava, Slovak Republic
Objective: Nanomaterials are materials consisting of particles having one or more dimensions smaller than 100 nm. Nanoparticles (NP) have different properties and effects in comparison with the same particle materials of larger size. They can penetrate through various membranes and get from the bloodstream to other organs in the body. Therefore, in our experiment we have dealt with the impact of nanoparticles TiO2 instilled intravenously (i.v.) (to a tail vein of an animal) on the selected parameters of bronchoalveolar lavage (BAL). The aim of our study was to determine whether TiO2 nanoparticles do pass through the vascular system to the respiratory tract, and if so, how they affect the selected inflammatory and cytotoxic parameters of bronchoalveolar lavage.
Methods: Wistar rats were intravenously given a suspension of TiO2 nanoparticles in saline solution. This suspension contained 10% volume of rat serum in dose: 1.0% from LD50 = 0.592 mg/kg of animal body weight. After the time intervals 1, 7, 14 and 28 days, the animals were sacrificed under anaesthesia; bronchoalveolar lavage was performed and the BAL cells were isolated. We have examined these markers: differential count of BAL cells - alveolar macrophages (AM), polymorphonuclear leukocytes (PMNL), lymphocytes (Ly); viability and phagocytic activity of AM; proportion of immature cells and cathepsin D enzyme levels.
Results: Regarding the respiratory toxicity of TiO2 nanoparticles we have found that TiO2 nanoparticles are relatively inert. BAL examined parameters (except the immature form of AM) were not significantly changed after 28 days of instillation compared to the control group. We found that the TiO2 nanoparticles used in our study were transferred from the bloodstream to the respiratory tract, but in a 28-day phase after i.v. instillation have been largely eliminated by the defence mechanism from the respiratory tract.
Conclusions: We suggest low biopersistence and relatively rapid elimination of TiO2 nanoparticles from the lung under used experimental conditions.
Keywords: TiO2 nanoparticles, intravenous instillation, bronchoalveolar lavage, inflammatory and cytotoxic parameters
Received: October 2, 2017; Revised: May 25, 2018; Published: September 30, 2018 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Commission Recommendation of 18 October 2011 on the definition of nanomaterial. Off J Eur Union. 2011 Oct 20;54(L 275):38-40.
- Allhoff F, Lin P, Moore D. What is nanotechnology and why does it matter? From science to ethics. Chichester: Wiley-Blackwell; 2010.
Go to original source...
- Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJ. Nanotoxicology. Occup Environ Med. 2004 Sep;61(9):727-8.
Go to original source...
Go to PubMed...
- Jain KK. Nanotechnologies. In: Jain KK. The handbook of nanomedicine. Totowa: Humana Press; 2008. p. 7-61.
Go to original source...
- Borm PJA, Muller-Schulte D. Nanoparticles in medicine. In: Donaldson K, Borm P, editors. Particle toxicology. Boca Raton: CRC Press Taylor & Francis Group; 2007. p. 387-411.
Go to original source...
- Kuka S, Hurbánková M, Drličková M, Baška T, Hudečková H, Tatarková Z. Nanomaterials - a new and former public health issue. The case of Slovakia. Cent Eur J Public Health. 2016 Dec;24(4):308-13.
Go to original source...
Go to PubMed...
- Yu MH. Environmental toxicology: biological and health effects of pollutants. 2nd ed. Boca Raton: CRC Press; 2005.
- Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006 Feb;311(5761):622-7.
Go to original source...
Go to PubMed...
- Warheit DB, Brock WJ, Lee KP, Webb TR, Reed KL. Comparative pulmonary toxicity inhalation and instillation studies with different TiO2 particle formulations: impact of surface treatments on particle toxicity. Toxicol Sci. 2005;88(2):514-24.
Go to original source...
Go to PubMed...
- Warheit DB, Webb TR, Reed KL, Frerichs S, Sayes CM. Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties. Toxicology. 2007;230(1):90-104.
Go to original source...
Go to PubMed...
- Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, et al.; ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol. 2005 Oct 6;2:8. doi:10.1186/1743-8977-2-8.
Go to original source...
Go to PubMed...
- Hurbánková M, Hrašková D, Moricová Š. Occupational exposure to nanoparticles. Prac Lek. 2014;66(2-3):78-84. (In Slovak.)
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Carbon black, titanium dioxide, and talc. IARC Monogr Eval Carcinog Risks Hum. 2010;93:1-413.
- Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Cogliano V, et al. Carcinogenicity of carbon black, titanium dioxide, and talc. Lancet Oncol. 2006;7(4):295-6.
Go to original source...
Go to PubMed...
- Borm PJA, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, et al. The potential risk of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol. 2006 Aug 14;3:11. doi:10.1186/1743-8977-3-11.
Go to original source...
Go to PubMed...
- Neeraj V, editor. Pulmonary nanomedicine: diagnostics, imaging, and therapeutics. Boca Raton: Pan Stanford Publishing; 2012.
- Fornůsek L, Větvička V, Kopeček J. Phagocytosis of the peritoneal leukocytes - a new single method. Imunol Zprav. 1982;13(3-4):67- 8. (In Czech.)
- Hurbánková M, Černá S, Kováčiková Z, Wimmerová S, Hrašková, D, Marcišiaková J, et al. Effect of TiO2 nanofibres on selected bronchoalveolar parameters in acute and subacute phase - experimental study. Cent Eur J Public Health. 2013;21(3):165-70.
Go to original source...
- Hurbánková M, Kaiglová A. Compared effects of asbestos and wollastonite fibrous dusts on various biological parameters measured in bronchoalveolar lavage fluid. J Trace Microprobe Tech. 1999;17(2):233-43.
- Dziedzic D, Wheeler CS, Gross KB. Bronchoalveolar lavage: detecting markers of lung injury. In: Corn M, editor. Handbook of hazardous materials. San Diego: Academic Press; 1993. p. 99-111.
Go to original source...
- Černá S, Hurbánková M, Kováčiková Z, Beňo M, Wimmerová S, Kiss T, et al. Changes in the cytotoxic parameters of bronchoalveolar lavage of rats after 6 month exposure to refractory ceramic fibres, amosite asbestos and cigarette smoke. Chem Listy. 2007;101 Suppl:172-3.
- Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl R H. Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res. 2009; 69(22):8784-9.
Go to original source...
Go to PubMed...
- Kelly FJ, Mudway IS. Particle-mediated extracellular oxidative stress in the lung. In: Donaldson K, Borm P, editors. Particle toxicology. Boca Raton: CRC Press/Taylor & Francis Group; 2007. p. 89-117.
Go to original source...
- Witschi H. Tobacco smoking, In: Gardner DE, editor. Toxicology of the lung. Boca Raton: CRC/Taylor & Francis Group; 2006. p. 623-47.
Go to original source...
- Hurbankova M, Volkovova K, Hraskova D, Wimmerova S, Moricova S. Respiratory toxicity of Fe3O4 nanoparticles: experimental study. Rev Environ Health. 2017;32(1-2):207-10.
Go to original source...
Go to PubMed...
- Hurbánková M, Kaiglová A, Buchancová J. Cytokines - the important biomarkers of lung injury after exposure to industrial fibrous dusts. Acta Med Martin. 2001;1(1):19-24.
- Tarkowski M, Gorski P. Macrophage activity in asbestos related diseases. Pol J Occup Med Environ Health. 1991;4(2):115-25.
Go to PubMed...
- Cohen MD. Pulmonary immunotoxicology. In: Gardner DE, editor. Toxicology of the lung. Boca Raton: CRC/Taylor & Francis Group; 2006. p. 351-417.
Go to original source...
- Hurbánková M, Tátrai E, Černá S, Six E, Kováčiková Z, Kyrtopoulos S. Inflammatory and cytotoxic effects as well as histological findings of selected industrial fibrous dusts in fischer rats after intratracheal instillation. Biologia. 2004; 59(6):769-78.
- Murashov V, Howard J. Essential features of proactive risk management. Natur Nanotechnol. 2009;4(8):467-70.
Go to original source...
Go to PubMed...
- Occupational exposure to titanium dioxide. Current Intelligence Bulletin 63. Cincinnati: NIOSH; 2011.