Cent Eur J Public Health 2020, 28(3):198-201 | DOI: 10.21101/cejph.a5851

Health aspects of exposure to emissions from burning coal of high beryllium content: interactions with the immune system

Jitka Petanová1, Vladimír Bencko2
1 Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
2 Institute of Hygiene and Epidemiology, First Faculty of Medicine, Charles University, Prague, Czech Republic

Beryllium has an impact on the human health of professionally or non-occupationally exposed people. Current evidence suggests that beryllium acts as a hapten with limited antigenic properties and is presented by antigen presenting cells to CD4+ T cells, which possess specific antigen receptors. The immunological changes in humoral immunoreactivity were considered biomarkers of beryllium exposure. In the present, due to the development of immunologic knowledge, tests of cellular immunity have promising potential for further research in this field. The historical view of the immune response to beryllium in acute and/or chronic beryllium disease is an example of the development of the interaction between mechanisms of innate and adaptive (specific), humoral and cellular immunity. The authors emphasize the increasing importance of immunological aspects in the studies of health impacts of human exposure to environmental pollutants.

Keywords: beryllium-rich coal, human exposure, cellular immunity, humoral immunity

Received: June 11, 2019; Revised: July 14, 2020; Accepted: July 14, 2020; Published: September 30, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Petanová J, Bencko V. Health aspects of exposure to emissions from burning coal of high beryllium content: interactions with the immune system. Cent Eur J Public Health. 2020;28(3):198-201. doi: 10.21101/cejph.a5851. PubMed PMID: 32997475.
Download citation

References

  1. Wilson R, Colome SD, Spengler JD, Wilson DG. Health effects of fossil fuel burning. Cambridge: Ballinger; 1980.
  2. Jiřele V, Nechyba L, Pachner P. A contribution to the elucidation of beryllium hygienic importance in some sorts of Sokolov Basin coals. Ceskoslov Hyg. 1966;11:329-39. (In Czech.)
  3. Bezačinský M, Pilátová B, Jiřele V, Bencko V. To the problem of trace elements and hydrocarbon emissions from combustion of coal. J Hyg Epidemiol Microbiol Immunol. 1984;28(2):129-38. Go to PubMed...
  4. Strupp C. Beryllium metal I. Experimental results on acute oral toxicity, local skin and eye effects, and genotoxicity. Ann Occup Hyg. 2011;55(1):30-42. Go to PubMed...
  5. Duling MG, Stefaniak AB, Lawrence RB, Chipera SJ, Virji MA. Release of beryllium from mineral ores in artificial lung and skin surface fluids. Environ Geochem Health. 2012;34(3):313-22. Go to original source... Go to PubMed...
  6. Ibanez Y, Le Bot B, Glorennec P. House-dust metal content and bioaccessibility: a review. Eur J Mineral. 2010;22(5):629-37. Go to original source...
  7. Eisenbud M, Wanta RC, Dustan C, Steadman LT, Harris WB, Wolf BS. Nonoccupational berylliosis. J Ind Hyg Toxicol. 1949;31(5):282-94.
  8. Hardy HL. The disability found in persons exposed to certain beryllium compounds. AMA Arch Ind Health. 1955;12(2):174-81.
  9. Chesnokov VA, Belova AA. Chronic exposure to low concentrations of beryllium on the level of human serum immunoglobulins. Gig Tr Prof Zabol. 1979;(8):38-40. (In Russian.)
  10. Bouška V, Pešek J. Quality parameters of lignite of the North Bohemian Basin in the Czech Republic in comparison with the world average lignite. Int J Coal Geol. 1999;40(2-3):211-35. Go to original source...
  11. Bencko V, Vasilieva EV, Symon K. Immunological aspects of exposure to emissions from burning coal of high beryllium content. Environ Res. 1980;22(2):439-49. Go to original source... Go to PubMed...
  12. Chauhan RS, Cohen Tervaert JW, Conrad K, Cooper GS, De Souza Querioz ML, Germolec DR, et al. Principles and methods for assessing autoimmunity associated with exposure to chemicals. Environmental Health Criteria 236. Geneva: WHO; 2006.
  13. Pollard KM, Hultman P, Kono DH. Toxicology of autoimmune diseases. Chem Res Toxicol. 2010;23(3):455-66. Go to original source... Go to PubMed...
  14. McCleskey TM, Buchner V, Field RW, Scott BL. Recent advances in understanding the biomolecular basis of chronic beryllium disease: a review. Rev Environ Health. 2009;24(2):75-115. Go to original source... Go to PubMed...
  15. Cummings KJ, Stefaniak AB, Virji MA, Kreiss K. A reconsideration of acute beryllium disease. Environ Health Perspect. 2009;117(8):1250-6. Go to original source... Go to PubMed...
  16. Santo Tomas LH. Beryllium hypersensitivity and chronic beryllium lung disease. Curr Opin Pulm Med. 2009;15(2):165-9. Go to original source... Go to PubMed...
  17. Bencko V, Wagner V, Wagnerová M, Bátora J. Immunological profiles in workers of a power plant burning coal rich in arsenic content. J Hyg Epidemiol Microbiol Immunol. 1988;32(2):137-46. Go to PubMed...
  18. Resnick H, Roche M, Morgan WKC. Immunoglobulin concentrations in berylliosis. Am Rev Respir Dis. 1970;101(4):504-10.
  19. Vasilieva EV, Nikitina LS, Orlova AA. Concentrations of immunoglobulins in berylliosis. J Hyg Epidemiol Microbiol Immunol. 1977;21(3):254-60. Go to PubMed...
  20. Salvaggio JE, Flax MH, Leskowitz S. Studies in immunisation: III. The use of beryllium as a granuloma-producing agent in Freund's adjuvant. J Immunol. 1965;95(5):846-54. Go to original source...
  21. Zarkower A. Alterations in antibody response induced by chronic inhalation of SO2 and carbon. Arch Environ Health. 1972;25(1):45-50. Go to original source... Go to PubMed...
  22. Wagner V, Wagnerová M. Ecoimmunology. Prague: Avicenum; 1988. (In Czech.)
  23. Amicosante M, Fontenot AP. T cell recognition in chronic beryllium disease. Clin Immunol. 2006;121(2):134-43. Go to original source... Go to PubMed...
  24. Samuel G, Maier LA. Immunology of chronic beryllium disease. Curr Opin Allergy Clin Immunol. 2008;8(2):126-34. Go to original source... Go to PubMed...
  25. Falta MT, Bowerman NA, Dai S, Kappler JW, Fontenot AP. Linking genetic susceptibility and T cell activation in beryllium-induced disease. Proc Am Thorac Soc. 2010;7(2):126-9. Go to original source... Go to PubMed...
  26. Sawyer RT, Maier LA. Chronic beryllium disease: an updated model interaction between innate and acquired immunity. Biometals. 2011;24(1):1-17. Go to original source... Go to PubMed...
  27. Rodriguez S, Kunde YA, McCleskey TM, Hong-Geller E. Upregulation of I-CAM1 in response to beryllium exposure in small airway epithelial cells. Toxicol Lett. 2008;179(3):140-7. Go to original source... Go to PubMed...
  28. Henderson WR, Fukuyama K, Epstein WL, Spetler LE. In vitro demonstration of delayed hypersensitivity in patients with berylliosis. J Invest Dermatol. 1972;58(1):5-8. Go to original source... Go to PubMed...
  29. Price CD, Pugh A, Pioli EM, Williams WJ. Beryllium macrophage migration inhibition test. Ann N Y Acad Sci. 1976;278:204-11. Go to original source... Go to PubMed...
  30. McKee AS, Fontenot AP. Interplay of innate and adaptive immunity in metal-induced hypersensitivity. Curr Opin Immunol. 2016;42:25-30. Go to original source... Go to PubMed...
  31. Wade MF, Collins MK, Richards D, Mack DG, Martin AK, Dinarello CA, et al. TLR9 and IL-1R1 promote mobilization of pulmonary dendritic cells during beryllium sensitization. J Immunol. 2018;201(8):2232-43. Go to original source... Go to PubMed...
  32. Rana SV. Metals and apoptosis: recent developments. J Trace Elem Med Biol. 2008;22(4):262-84. Go to original source... Go to PubMed...
  33. Fields S. Toxic beryllium: New solutions for a chronic problem. Environ Health Perspect. 2001;109(2):A74-9. Go to original source... Go to PubMed...
  34. Donovan EP, Kolanz ME, Galbraith DA, Chapman PS, Paustenbach DJ. Performance of the beryllium blood lymphocyte proliferation test based on a long-term occupational surveillance program. Int Arch Occup Environ Health. 2007;81(2):165-78. Go to original source... Go to PubMed...
  35. Kelleher P, Pacheco K, Newman LS. Inorganic dust pneumonias: the metal-related parenchymal disorders. Environ Health Perspect. 2000;108(Suppl 4):685-96. Go to original source... Go to PubMed...
  36. Fontenot AP, Maier LA. Genetic susceptibility and immune-mediated destruction in beryllium-induced disease. Trends Immunol. 2005;26(10):543-9. Go to original source... Go to PubMed...
  37. Stange AW, Furman FJ, Hilmas DE. The beryllium lymphocyte proliferation test: relevant issues in beryllium health surveillance. Am J Ind Med. 2004;46(5):453-62. Go to original source... Go to PubMed...
  38. Mack DG, Lanham AM, Falta MT, Palmer BE, Maier LA, Fontenot AP. Deficient and dysfunctional regulatory T cells in the lungs of chronic beryllium disease subjects. Am J Respir Crit Care Med. 2010;181(11):1241-9. Go to original source... Go to PubMed...
  39. Sato H, Silveira L, Spagnolo P, Gillespie M, Gottschall EB, Welsh KI, et al. CC chemokine receptor 5 gene polymorphisms in beryllium disease. Eur Respir J. 2010;36(2):331-8. Go to original source... Go to PubMed...
  40. Fontenot AP. Immunologic effects of beryllium exposure. Ann Am Thorac Soc. 2018;15(Suppl 2):S81-5. Go to original source... Go to PubMed...
  41. Greaves SA, Atif SM, Fontenot AP. Adaptive immunity in pulmonary sarcoidosis and chronic beryllium disease. Front Immunol. 2020;11:474. doi: 10.3389/fimmu.2020.00474. Go to original source... Go to PubMed...