Cent Eur J Public Health 2020, 28(3):202-207 | DOI: 10.21101/cejph.a5834

Comparison of respiratory toxicity of TiO2 and Fe3O4 nanoparticles after intravenous instillation: an experimental study

Marta Hurbánková1, Dominika Romančíková1, Katarína Volkovová2, Soňa Wimmerová1, Štefánia Moricová1
1 Faculty of Public Health, Slovak Medical University, Bratislava, Slovak Republic
2 Medical Faculty, Slovak Medical University, Bratislava, Slovak Republic

Objective: Nanomaterials consist of particles smaller than 100 nm - nanoparticles (NPs). Their nano dimensions allow them to penetrate through various membranes and enter into the bloodstream and disseminate into different body organs. Massive expansion of nanotechnologies together with production of new nanoparticles which have not yet been in contact with living organisms may pose a potential health problem. It is therefore necessary to investigate the health impact of NPs after experimental exposure. Comparison of the effect of TiO2 and NPs Fe3O4 in Wistar rats at time intervals 1, 7, 14 and 28 days was performed by studying the cytotoxic effect in the isolated inflammatory cells from bronchoalveolar lavage (BAL).

Methods: Wistar rats were intravenously (i.v.) given a suspension of NPs TiO2 or Fe3O4 (coated by sodium oleate) via the tail vein. After time intervals of 1, 7, 14 and 28 days, we sacrificed the animals under anaesthesia, performed BAL and isolated the cells. The number of animals in the individual groups was 7-8. We examined the differential count of BAL cells (alveolar macrophages - AM, polymorphonuclear leukocytes - PMN, lymphocytes - Ly); viability and phagocytic activity of AM; the proportion of immature and polynuclear cells and enzymes - cathepsin D - CAT D, lactate dehydrogenase - LDH and acid phosphatase - ACP.

Results: We found that TiO2 NPs are relatively inert - without induction of inflammatory and cytotoxic response. Exposure to nanoparticles Fe3O4 induced - under the same experimental conditions - in comparison with the control and TiO2 a more extensive inflammatory and cytotoxic response, albeit only at 1, 7 and 14 days after injection.

Conclusions: The results suggest that TiO2 and Fe3O4 nanoparticles used in our study were transferred from the bloodstream to the respiratory tract, but this effect was not observed at 28 days after i.v. injection, probably due to their removal from the respiratory tract.

Keywords: TiO2 and Fe3O4 nanoparticles, intravenous administration, bronchoalveolar lavage, inflammatory cells, cytotoxic parameters

Received: May 16, 2019; Revised: April 15, 2020; Accepted: April 15, 2020; Published: September 30, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Hurbánková M, Romančíková D, Volkovová K, Wimmerová S, Moricová Š. Comparison of respiratory toxicity of TiO2 and Fe3O4 nanoparticles after intravenous instillation: an experimental study. Cent Eur J Public Health. 2020;28(3):202-207. doi: 10.21101/cejph.a5834. PubMed PMID: 32997476.
Download citation

References

  1. Commission Recommendation of 18 October 2011 on the definition of nanomaterial. Off J Eur Union. 2011 Oct 20;54( L 275):38-40.
  2. Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, et al. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health A. 2002 Oct 25;65(20):1513-30. Go to original source... Go to PubMed...
  3. Kuka S, Hurbánková M, Drličková M, Baška T, Hudečková H, Tatarková Z. Nanomaterials - a new and former public health issue. The case of Slovakia. Cent Eur J Public Health. 2016;24(4):308-13. Go to original source... Go to PubMed...
  4. Borm P, Muller-Schulte D. Nanoparticles in medicine. In: Donaldson K, Borm P, editors. Particle toxicology. Boca Raton: CRC Press/Taylor & Francis Group; 2007. p. 387-413. Go to original source...
  5. Allhoff F, Lin P, Moore D. What is nanotechnology and why does it matter?: from science to ethics. Oxford: Wiley-Blackwell; 2010. Go to original source...
  6. Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJA. Nanotoxicology. Occup Environ Med. 2004;61(9):727-8. Go to original source... Go to PubMed...
  7. Jain KK. The handbook of nanomedicine. Totowa, NJ: Humana Press; 2008.
  8. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Carbon black, titanium dioxide, and talc. IARC Monogr Eval Carcinog Risks Hum. 2010;93:1-413.
  9. Hurbánková M, Volkovová K, Wimmerová S, Henčeková D, Moricová Š. Respiratory toxicity of TiO2 nanoparticles after intravenous instillation - an experimental study. Cent Eur J Public Health. 2018;26(3):177-82. Go to original source... Go to PubMed...
  10. Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH. Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res. 2009;69(22):8784-9. Go to original source... Go to PubMed...
  11. Pelclova D, Zdimal V, Kacer P, Fenclova Z, Vlckova S, Syslova K, et al. Oxidative stress markers are elevated in exhaled breath condensate of workers exposed to nanoparticles during iron oxide pigment production. J. Breath Res. 2016;10(1):016004. doi: 10.1088/1752-7155/10/1/016004. Go to original source... Go to PubMed...
  12. Fornusek L, Vetvicka V, Kopecek J. Phagocytosis of the peritoneal leukocytes - a new single method. Imunol Zprav. 1982;13:67-8. (In Czech.)
  13. Hurbankova M, Kaiglova A. Compared effects of asbestos and wollastonite fibrous dusts on various biological parameters measured in bronchoalveolar lavage fluid. J Trace Microprobe Tech. 1999;17(2):233-43.
  14. Hurbánková M, Černá S, Kováčiková Z, Wimmerová S, Hrašková D, Marcišiaková J, et al. Effect of TiO2 nanofibres on selected bronchoalveolar parameters in acute and subacute phase - experimental study. Cent Eur J Public Health. 2013;21(3):165-70. Go to original source... Go to PubMed...
  15. Hurbankova M, Volkovova K, Hraskova D, Wimmerova S, Moricova S. Respiratory toxicity of Fe3O4 nanoparticles: experimental study. Rev Environ Health. 2017;32(1-2):207-10. Go to original source... Go to PubMed...
  16. Dziedzic D, Wheeler CS, Gross KB. Bronchoalveolar lavage: detecting markers of lung injury. In: Corn M, editor. Handbook of hazardous materials. San Diego: Academic Press; 1993. p. 99-111. Go to original source...
  17. Dusinska, M, Boland S, Saunders M, Juillerat-Jeanneret L, Tran L, Pojana G, et al. Towards an alternative testing strategy for nanomaterials used in nanomedicine: lessons from NanoTEST. Nanotoxicology. 2015;9 Suppl 1:118-32. Go to original source... Go to PubMed...
  18. Baranowska-Wójcik E, Szwajgier D, Oleszczuk P, Winiarska-Mieczan A. Effects of titanium dioxide nanoparticles exposure on human health - a review. Biol Trace Elem Res. 2020;193(1):118-29. Go to original source... Go to PubMed...
  19. Kumar V, Dasgupta N, Ranjan S. Nanotoxicology: toxicity evaluation, risk assessment, and management. Boca Raton: CRC Press, Taylor & Francis Group; 2018. Go to original source...
  20. Srinivas A, Rao PJ, Selvam G, Goparaju A, Murthy BP, Reddy NP. Oxidative stress and inflammatory responses of rat following acute inhalation exposure to iron oxide nanoparticles. Hum Exp Toxicol. 2012;31(11):1113-31. Go to original source... Go to PubMed...
  21. Kelly FJ, Mudway IS. Particle-mediated extracellular oxidative stress in the lung. In: Donaldson K, Borm P, editors. Particle toxicology. Boca Raton: CRC Press/Taylor & Francis Group; 2007. p. 87-117. Go to original source...
  22. Han JY, Takeshita K, Utsumi H. Noninvasive detection of hydroxyl radical generation in lung by diesel exhaust particles. Free Radic Biol Med. 2001;30(5):516-25. Go to original source... Go to PubMed...
  23. Witschi H. Tobacco smoking. In: Gardner DE, editor. Toxicology of the lung. 4th ed. Boca Raton: CRC/Taylor & Francis; 2006. p. 623-47. Go to original source...
  24. Cohen MD. Pulmonary immunotoxicology. In: Gardner DE, editor. Toxicology of the lung. 4th ed. Boca Raton: CRC/Taylor & Francis; 2006. p. 351-418.
  25. Beno M, Hurbankova M, Dusinska M, Cerna S, Volkovova M, Staruchova M, et al. Multinucleate cells (MNC) as sensitive semiquantitative biomarkers of the toxic effect after experimental fibrous dust and cigarette smoke inhalation by rats. Exp Toxicol Pathol. 2005;57(1):77-87. Go to original source... Go to PubMed...
  26. Cerna S, Hurbankova M, Kovacikova Z, Beno M, Wimmerova S, Kiss T, et al. Changes in the cytotoxic parameters of bronchoalveolar lavage of rats after 6 month exposure to refractory ceramic fibres, amosite asbestos and cigarette smoke. Chem Listy. 2007;101 Suppl:172s-3s.