Cent Eur J Public Health 2015, 23(4):352-359 | DOI: 10.21101/cejph.a4392

Estimating the Baseline and Threshold for the Incidence of Diseases with Seasonal and Long-Term Trends

Bohumír Procházka1, Jan Kynčl2
1 Department of Biostatistics, National Institute of Public Health, Prague, Czech Republic
2 Department of Infectious Diseases Epidemiology, Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czech Republic

In epidemiology, it is very important to estimate the baseline incidence of infectious diseases. From this baseline, the epidemic threshold can be derived as a clue to recognize an excess incidence, i.e. to detect an epidemic by mathematical methods. Nevertheless, a problem is posed by the fact that the incidence may vary during the year, as a rule, in a season dependent manner. To model the incidence of a disease, some authors use seasonal trend models. For instance, Serfling applies the sine function with a phase shift and amplitude. A similar model based on the analysis of variance with kernel smoothing and Serfling's higher order models, i.e. models composed of multiple sine-cosine function pairs with a variably long period, will be presented below. Serfling's model uses a long-term linear trend, but the linearity may not be always acceptable. Therefore, a more complex, long-term trend estimation will also be addressed, using different smoothing methods. In addition, the issue of the time unit (mostly a week) used in describing the incidence is discussed.

Klíčová slova: seasonal trend, long-time trend, incidence, epidemic threshold, LOESS, Serfling model, ANOVA model

Vloženo: 13. duben 2015; Revidováno: 21. říjen 2015; Přijato: 21. říjen 2015; Zveřejněno: 30. prosinec 2015  Zobrazit citaci

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Procházka B, Kynčl J. Estimating the Baseline and Threshold for the Incidence of Diseases with Seasonal and Long-Term Trends. Cent Eur J Public Health. 2015;23(4):352-359. doi: 10.21101/cejph.a4392. PubMed PMID: 26841150.
Stáhnout citaci

Reference

  1. Gail HM, Benichou J. Encyclopedia of epidemiologic methods. Chichester: John Wiley & Sons; 2000.
  2. Kyncl J, Kriz B. Surveillance of acute respiratory infections in the Czech Republic and in Europe - example of an early warning system. In: Kocik J, Janiak M, Negut M, editors. Preparedness against bioterrorism and re-emerging infectious diseases. Amsterdam: IOS Press; 2004. p. 40-4.
  3. Armitage P, Colton T, editors. Encyclopedia of biostatistics. Chichester: John Wiley & Sons; 1999.
  4. Kyncl J, Prochazka B, Havlickova M, Otavova M, Castkova J, Kriz B. Excess death attributable to influenza in the Czech Republic in 1982-2000. J Epidemiol Community Health. 2004 Aug;58 Suppl 1:A31-2. Přejít k původnímu zdroji...
  5. Procházka B, Beneš Č. Evaluation of time trends in the weekly count of diseases. Epidemiol Mikrobiol Imunol. 1999Apr;48(2):52-9. (In Czech.)
  6. Procházka B. Biostatistics for physicians: Principles of basic methods and interpretation of results using the R statistical system. Praha: Karolinum; 2015. (In Czech.)
  7. Serfling RE. Methods for current statistical analysis of excess pneumoniainfluenza deaths. Public Health Rep. 1963 Jun; 78(6): 494-506. Přejít k původnímu zdroji...
  8. Assaad F, Cockburn WC, Sundaresan TK. Use of excess mortality from respiratory diseases in the study of influenza. Bull World Health Organ. 1973; 49(3): 219-33. Přejít na PubMed...
  9. Fleming DM, Cross KW, Watson JM, Verlander NQ. Excess winter mortality. Method of calculating mortality attributed to influenza is disputed. BMJ. 2002 Jun; 324(7349):1337. Přejít k původnímu zdroji... Přejít na PubMed...
  10. Kyselý J, Kříž B. High summer temperatures and mortality in the Czech Republic in 1982-2000. Epidemiol Mikrobiol Imunol. 2003 Aug;52(3):105-16. (In Czech.)
  11. Nicholson KG. Impact of influenza and respiratory syncytial virus on mortality in England and Wales from January 1975 to December 1990. Epidemiol Infect. 1996 Feb;116(1):51-63. Přejít k původnímu zdroji... Přejít na PubMed...
  12. Owen J, Maillardet R,Andrew R. Introduction to scientific programming and simulation using R. New York: CRC Press; 2009.